Sustainable Groundwater Development for Improved Livelihoods in Sub-Saharan Africa

KEY POLICY MESSAGES

• There is great potential for groundwater irrigation in much of Sub-Saharan Africa.

• Smallholder farmers are eager to tap reliable new irrigation sources.

• The most critical constraints lie in developing supply chains, finance, and other essential infrastructure.
At least 400 million people in Sub-Saharan Africa source their domestic water supply from groundwater. Yet this often abundant resource only accounts for around 20% of total irrigation. More widespread irrigation could help reduce rural poverty, improve food security, and counter droughts. Why is groundwater so under-tapped?

THERE IS GREAT POTENTIAL FOR GROUNDWATER IRRIGATION IN MUCH OF SUB-SAHARAN AFRICA

Pavelic et al. estimate that groundwater is considerably underutilized, from a study in a subset of 13 countries in the region. Of these, the highest potential is in Zambia, followed by Ghana, Mali, Mozambique, Nigeria, Rwanda, Tanzania and Uganda. Burkina Faso, Ethiopia, Kenya, Malawi and Niger have limited potential. Collectively, these countries could extend groundwater-irrigated area by 13.5 million hectares. Altchenko & Villholth (2015) put the total area of cropland in Africa potentially irrigable with renewable groundwater at anywhere from 27.2 to 64.3 million hectares, after accounting for human needs and environmental requirements. With proper integrated management at all levels, this potential can be developed without compromising domestic water supply.

SMALLHOLDER FARMERS ARE EAGER TO TAP RELIABLE NEW IRRIGATION SOURCES

Smallholders readily embrace groundwater irrigation. According to Villholth, smallholders form the nucleus of growth behind expanding groundwater irrigation, driven by improved access to low-cost technologies for pumps and drilling services. Smallholders favor groundwater irrigation due to the generally reliable year-round access and their autonomy over its utilization. This reduces their risk when making investments in other production inputs (seeds, fertilizers, pesticides and energy), which enables them to intensify through multiple cropping and to diversify, leading to greater productivity and higher net incomes.

A small motor pump, usually less than five horsepower, is the best of the irrigation technologies evaluated for improving the agricultural production of typical smallholders in Sub-Saharan countries. When Shah et al. asked rainfed farmers from nine countries in SSA to name their preferred mode of irrigation, they overwhelmingly chose to have a private well, a small-motor pump, and adequate flexible pipe. Namara et al. find that small-motorized pumps are the most widely used method for extracting groundwater.
Pumps alone are not enough, though. Shah et al. find that improving working capital availability, enhancing security of land tenure, and providing fuel at affordable prices are key complementary factors in stimulating smallholder irrigation development in Sub-Saharan Africa.

THE MOST CRITICAL CONSTRAINTS LIE IN DEVELOPING SUPPLY CHAINS, FINANCE AND OTHER ESSENTIAL INFRASTRUCTURE

Underdeveloped supply chains
While small motor pumps provide a path for smallholders to transition to groundwater irrigation, a web of complicating factors overshadows movement in that direction. Under-developed supply chains complicate the acquisition and use of small motor pumps. Focusing on Zambia, Colenbrander & van Koppen show how centralized provision of sales and services requiring farmers to travel long distances, unreliable availability of spare parts, and limited quality control create unacceptably high transaction costs for the farmers. Remote rural farmers also find it difficult to access adequate information regarding the available range of pump makes, models, prices, and how to operate and maintain the pumps properly.

Multiple obstacles to smallholders
Other indirect factors hinder smallholders’ adoption of groundwater pumps. In Ghana, Dittoh et al. show that smallholders recognize the economic advantages of groundwater irrigation but many cannot acquire the equipment due to inadequate working capital. More broadly across the region, Chokkakula & Giordano reveal obstacles such as borehole investment costs, the price of energy, access to credit, and land tenure security.

Access to credit
While diesel pumps usually cost more to operate than electric pumps, only 14% of rural Sub-Saharan Africa has electricity infrastructure. Forced to rely on diesel to power pumps, many smallholders find access to credit is a crucial factor, but they face unacceptable interest rates. Women are often particularly disadvantaged in getting access to credit, as they lack land tenure for collateral. van Koppen et al. show that female farmers given equitable opportunities are quite capable of achieving adequate livelihoods.
THE PROMISE OF SOLAR

Solar irrigation pumps can help smallholder farmers in Sub-Saharan Africa overcome the working capital problem. Solar pumps are gaining prominence in Asia and slowly also in parts of Africa, because they provide high quality energy for irrigation at near-zero marginal cost. Their capital cost remains beyond the reach of most smallholders, but in some cases, governments offer significant capital subsidies to promote adoption (Hartung & Pluschke, 2018). If the issues of initial cost and working capital can be overcome, solar and motor pumps provide a path for smallholders’ to improve their livelihoods through greater groundwater irrigation.

DON’T FORGET SUSTAINABILITY!

Developing groundwater for irrigation will improve smallholder incomes. For groundwater to be sustainable, however, this use cannot impinge on the quantity or quality available for domestic and environmental uses. Villholth reminds us of this problem, and points to the necessity to ensure local management of the resource, with appropriate external support, to avoid depletion and intersectoral conflicts.

Key Issues to Address:
• Decentralized supply and maintenance of pumps.
• Smallholder access to reasonable financing options.
• Smallholder access to reliable and low-cost energy sources, particularly solar energy.

REFERENCES

• Srinivas Chokkakula & Mark Giordano. Do policy and institutional factors explain the low levels of smallholder groundwater use in Sub-Saharan Africa?
• Tushaar Shah, Shilp Verma & Paul Pavelic. Understanding smallholder irrigation in Sub-Saharan Africa: results of a sample survey from nine countries.
• Regassa E. Namara, Gebrehawaria Gebregziabber, Meredith Giordano & Charlotte De Fraiture. Small pumps and poor farmers in Sub-Saharan Africa: an assessment of current extent of use and poverty outreach.
• Barbara van Koppen, Lesley Hope & Willem Colenbrander. Gender aspects of smallholder private groundwater irrigation in Ghana and Zambia.

Additional references

ACKNOWLEDGEMENTS
Policy Brief Editors: Nicholas J. Griffin and James E. Nickum
Layout: Nathalie Lyon-Caen