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Introduction 
 
 Societal vulnerability to droughts with devastating consequences has come under scrutiny 
time and again in the history of mankind. Recent droughts in the North American Plains are no 
exceptions. The resulting acute water shortages and lower or no crop yields have significant 
impact on the economy. The magnitude of impact on society and economy depends on the 
severity, duration and the spatial extent of droughts (Dracup et al., 1980). In general, droughts 
are associated with water deficit. However, drought can be defined from several perspectives 
(Wilhite and Glantz, 1987; Changnon, 1987). For example, a large deficit of precipitation from 
normal may be referred to as meteorological drought, of stream flows and groundwater levels as 
hydrological drought, and of soil moisture availability as agricultural drought (Yevjevich, 1967). 
If precipitation is the carrier of drought signal, stream flow, groundwater level, soil moisture 
availability, etc., are drought indicators (Klemes, 1987). One of the popular drought indicators 
used for drought management and mitigation is Palmer Drought Severity Index (PDSI) and has 
been analyzed by many investigators for temporal and spatial characteristics (Palmer, 1965; Karl, 
1986; Karl et al., 1987; Wilhite and Glantz, 1987, Guttman, 1991 and 1998; Guttman et al., 
1992; Heddinghaus and Sabol, 1991). Climate is the driving mechanism of droughts. Therefore, 
a better understanding of the past spatial and temporal variability of climate and drought 
indicators is essential to develop better perspectives of long-term variations and correlative 
structure of the drought characteristics. Drought time series from different parts of the world 
have been analyzed extensively in the last three decades using traditional time series analysis 
techniques (Chin and Yevjevich, 1974, Yevjevich, 1977; Padmanabhan and Rao, 1979 and 1988; 
Rao and Padmanabhan, 1984). Typically, these investigations focused on identifying dominant 
frequency components in the climatological and hydrological time series for improving modeling 
and simulation of hydrological variables with exogenous input (Padmanabhan, 1990 and 1991). 
Hydrologic variables over longer time scales could be governed by differing processes 
mechanisms. Therefore, trends and the correlations need to be separated to analyze long term 
correlations. Though classical tools such as autocorrelation function and spectral analysis can 
provide preliminary indications for the presence of long range correlation, it may be 
inappropriate to use them to determine temporal scaling properties, particularly in the presence 
of non-stationarities (Kavasseri and Nagarajan, 2005). In recent years several advancements have 
been made, particularly in the investigation of long-term persistence or correlations and temporal 
scaling properties of time series data from diverse disciplines (Ivanova and Ausloos, 1999; Peng 
et al., 1995; Hausdorff et al., 1995; Vandewalle and Ausloos, 1997; Kantelhardt et al., 2001; 
Kavasseri and Nagarajan, 2005).  The significance of long-range persistence of droughts in 
drought hazard assessment and management has been recognized and addressed by many 
researchers (Bras and Rodriguez-Iturbe, 1985; Pellettier and Turcotte, 1997). However, the 
recent developments in time series analysis techniques have not been taken full advantage of in 
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further investigating the long-term persistence and temporal scaling characteristics of drought 
time series.  

Hydrologists and water resource managers have always been interested in quantifying 
impacts of climate variability on water resources. In a sense, hydrologists were among the first 
scientists to define the first order impacts of climate so as to design water structures, operate 
water facilities, and to assess weather events affecting water supplies (Changnon, 1987). 
However, most hydrologic studies of extreme events such as floods and droughts have assumed 
stationarity of climate over time. Several researchers have pointed out that non-random climate 
shifts do occur and we need to include them in the planning and design of water resources 
systems (Chin and Yevjevich, 1974; Yevjevich, 1977). Nemec and Schaake (1982) found that 
moderate fluctuations in climate may produce major hydrologic changes. Meko and Stockton 
(1984) found that stationarity assumption clearly did not apply in the western and Changnon 
(1985) in mid-western United States. More recently, it has been emphasized that stationarity 
assumptions should no longer serve as a central, default assumption in water resources 
management because of the hydroclimatic change apparently now under way (Milly et al., 2008).  

In this paper we analyze some Palmer Drought Severity Index (PDSI) time series 
reconstructed from tree ring data for their temporal scaling properties and long-term persistence 
using Detrended Fluctuation Analysis (DFA) (Peng et al., 1994). 
 
Data  
 

The data for this study was obtained from ‘North American Drought Atlas’ which provides 
286 annual tree-ring drought reconstructions on a 2.5 degree by 2.5 degree grid network of 
summer Palmers Drought Severity Index (PDSI) (Cook and Krusic, 2004; US Department of 
Commerce, 2007). The data length of the reconstructed PDSI varies from about 300 to 2000 
years at some locations. Locations with longest reconstructed data are concentrated in an area 
bounded between 122.5 W to 102.0 W and from 42.5 N to 30.0 N, mainly in California, Nevada, 
Utah, Colorado, and New Mexico (Fig. 1) 
 

 
Fig 1: US region selected for analysis. Inset shows selected stations with longest  

PDSI reconstructed available data. 



 3

Table 1: Selected stations. 
Station 

ID 
State Latitude  Longitude No of years of reconstructed 

PDSI data used in analysis 
035 CA N 40.0 W 122.5 2000  (1 to 2000) 
036 CA N 37.5 W 122.5 2000  (1 to 2000) 
046 CA N 40.0 W 120.0 2000  (1 to 2000) 
047 CA N 37.5 W 120.0 2000  (1 to 2000) 
048 CA N 35.0 W 120.0 2000  (1 to 2000) 
058 NV N 40.0 W 117.5 2000  (1 to 2000) 
059 NV N 37.5 W 117.5 2000  (1 to 2000) 
060 CA N 35.0 W 117.5 2000  (1 to 2000) 
071 NV N 40.0 W 115.0 2000  (1 to 2000) 
072 NV N 37.5 W 115.0 2000  (1 to 2000) 
073 CA N 35.0 W 115.0 2000  (1 to 2000) 
074 CA N 32.5 W 115.0 2000  (1 to 2000) 
084 MT N 45.0 W 112.5  2004  (1 to 2000) 
086 UT N 40.0 W 112.5  2004  (1 to 2000) 

 
 
Methods Used 
 

Power spectral techniques have been traditionally used in the past to analyze hydrologic and 
climatologic time series data for their frequency content and to detect possible long-range 
correlations of the power-law form (Feder, 1988).  
 

Hurst exponent (H) is a parameter indicative of the nature of correlative properties of time 
series data. Hurst (1951) and Hurst et al. (1965) studied the long-term correlations using 
Rescaled Range technique and showed that many hydrologic and climatologic time series exhibit 
a power-law relationship with an average exponent of 0.73; a value greater than 0.5 indicates the 
presence of long term persistence. Other methods to estimate the Hurst exponent include 
variance method, Whittle estimator, and wavelet based methods. Hurst estimators are sensitive to 
trends in the data and therefore, may give spurious results. Several interpretations have been put 
forth by various investigators. For example, large-scale variability of a time series can explain 
Hurst phenomenon (Koutsoyiannis, 2000 and 2002). It can be due to a mixture of temporal 
scales (Mesa and Poveda, 1993).  
 

 Recently the Detrended Fluctuation Analysis (DFA) and its extensions have been 
proposed as an alternative to infer possible long range correlations and temporal scaling 
properties in data sets obtained from diverse disciplines (Ivanova and Ausloos, 1999; Peng et al., 
1995; Hausdorff et al., 1995; Vandewalle and Ausloos, 1997; Kantelhardt et al., 2001; Kavasseri 
and Nagarajan, 2005). In this method, in order to remove the seasonal trends, the fluctuations in 
the data rather than the actual data are used. 
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 Power spectral density (PSD) estimation, Hurst H, and Detrended Fluctuation Analysis were 
used in this study. Welch method (Welch, 1967) was used for power spectral estimation. 
Rescaled Range analysis was used to determine the Hurst exponent  H. 
 
Data Analysis 
 
Time series and Power Spectrum 
 
 Figure 2 shows a temporal trace and power spectrum of the reconstructed PDSI of a 
representative record for a location 112.5 W and 45.0 N in the United States.  
 
 

 
 

 
 

Figure 2: Temporal trace and Power spectrum of a representative record (Station 084) 
 
 Use of PDSI offers a number of advantages compared to seasonal temperature or 
precipitation values as it integrates both temperature and precipitation to estimate how the soil 
moisture availability differs from normal condition (Brewer et al., 2007). The index ranges 
between negative values for dry conditions and positive values for wet conditions; values less 
than -4 in indicate extreme drought where as greater than +4 would indicate an extreme wet 
spell. 
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Rescaled Range  
 

 Rescaled range, also called as R/S statistic, is defined as the ratio ( )
( )kS

kR
S

R =    where 

( )kR  is the sequential range for sample k , and ( )kS  is the square root of sample sequential 

variance ( )kS 2 .  The ratio S
R  varies as Hk . If we plot R/S against k in a log-log paper the slope 

of the linear relationship should yield an estimate of H. 
 
 Rescaled Range analysis was carried out on data from all stations to estimate their Hurst 
exponents. Sample size of multiple of 100 was used for the analysis for a total of 2000 data, 
giving 20 data points. For long-memory process, the points in the R/S plot should be scattered 
randomly around a straight line with a slope H > 0.5.  To be more precise, the points should 
ultimately (for large values of k ) be scattered randomly around a straight line with a slope H > 
0.5, for sufficiently large lags. In present analysis, with a total data points in the neighborhood of 
2000, “large” value of k  was arbitrarily taken as greater than 1000.  
 
 Table 2: R/S range analysis values 

Station ID State Latitude Longitude Overall slope 
(H) 

Slope for k  >1000 

035 CA N 40.0 W 122.5 1.1003 0.6819 
036 CA N 37.5 W 122.5 1.0674 0.6658 
046 CA N 40.0 W 120.0 0.9961 0.6651 
047 CA N 37.5 W 120.0 1.0701 0.9247 
048 CA N 35.0 W 120.0 0.8340 0.3764 
058 NV N 40.0 W 117.5 0.8927 0.4153 
059 NV N 37.5 W 117.5 0.8120 0.5953 
060 CA N 35.0 W 117.5 0.7000 1.0303 
071 NV N 40.0 W 115.0 0.5793 0.0131 
072 NV N 37.5 W 115.0 0.5633 0.5328 
073 CA N 35.0 W 115.0 0.5384 1.4177 
074 CA N 32.5 W 115.0 0.7988 1.7390 
084 MT N 45.0 W 112.5 0.9010 -0.0744 
086 UT N 40.0 W 112.5 0.5099 0.7914 

 
 Figure 3 (a) presents the scatter of the points around a straight line with a slope greater than 
0.5 for station 035 while Figure 3 (b) shows the scatter of the points for 1000�k . 
 
 



 6

 
 

Figure 3: Estimation of Hurst’s coefficient for a representative station (Station 035): 
(a) Overall scatter (b) scatter of points with k �1000 

 
Detrended Fluctuation Analysis 
 

In order to remove the seasonal trends, the fluctuations in the PDSI data rather than the actual 
PDSI value was used in the DFA analysis. 
 
  
 

In this equation, iPDSI  is the mean value of PDSI for the whole period. A running sum of 
the PDSI fluctuation is calculated as, 
 
  
 
where m = 1, …, n. The time series of the y (m) is next divided into non-overlapping intervals 
with equal lengths n. In each interval, y (m) is fitted to a straight line, x (m) = km + d, for each 
segment and the detrended square variability F2

 (n) is calculated as  
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If the PDSI fluctuation were uncorrelated, indicating a white noise, one expects ( ) αnnF ≈  

where 2
1=α . If 2

1�α , one can expect long-range power law correlations in the data for the 

range of values considered. 
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 Reconstructed PDSI time series from 14 stations were analyzed using the DFA algorithm 
(Peng et al., 1994). A fourth order polynomial was used for regression in the DFA algorithm. 
The result of the analysis is presented in Table 3. 
 
Table 3. Scaling factor for selected PDSI data in the mid-western USA. 

Station ID State Latitude Longitude Scaling factor 
(α ) 

035 CA N 40.0 W 122.5 0.4662 
036 CA N 37.5 W 122.5 0.4926 
046 CA N 40.0 W 120.0 0.4893 
047 CA N 37.5 W 120.0 0.5157 
048 CA N 35.0 W 120.0 0.5428 
058 NV N 40.0 W 117.5 0.5646 
059 NV N 37.5 W 117.5 0.5656 
060 CA N 35.0 W 117.5 0.5660 
071 NV N 40.0 W 115.0 0.6505 
072 NV N 37.5 W 115.0 0.6399 
073 CA N 35.0 W 115.0 0.6722 
074 CA N 32.5 W 115.0 0.6192 
084 MT N 45.0 W 112.5 0.6547 
086 UT N 40.0 W 112.5 0.6731 

 
 Table 3 shows that out of a total of 14 data sets, 10 data sets (71%) clearly show the scaling 
index greater than 0.5, indicating long term memory. However, 4 data sets show the scaling 
index less than 0.5. A plot of log10F(n) vs. log10(n) is shown for representative stations 036, 047, 
and 084 in Figure 4. The slope of these plots gives the value of alpha.  
 

 
 

Figure 4. A log-log plot of the DFA analysis for three representative stations:  
(a) Station 036 (b) Station 047 (c) Station 084. 
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Discussion 
 
 Examination of the power spectrum of the PDSI in Figure 2 indicates a power-law decay 
which is suggestive of a possible long-range correlation. Long range correlations generally 
indicate that temporally well separated samples of time series are correlated with each other and 
indicative of a self-similar behavior. 
 
 In the Rescaled Range analysis H  is estimated by the slope of the straight line showing the 
“ultimate” behavior of the data. An inherent difficulty in this method is to decide from which 
k value on the “ultimate behavior” starts (Baren, 1994). In the values obtained in the present 
analysis, overall slope values are greater than 0.5 in all stations as shown in Table 2. Analyzing 
with k>1000, majority of the stations shows H value greater than 0.5, with 10 out of 14 stations. 
However, for two stations the value is well below 0.5. Thus it gives uncertainty in the estimation 
of H value. 
 

The techniques used in the present study, viz. R/S Analysis and DFA analysis are used quite 
extensively, however, these techniques can extract only a single scaling exponent from a time 
series and therefore appropriate only for the analysis of monofractal time series which have 
uniform scaling properties throughout the signal which can be characterized by a single 
exponent. It is possible that some processes may be governed by more than one scaling 
exponent, in which case a single scaling exponent would be unable to capture the complex 
dynamics inherent in the data. Multifractal Detrended Fluctuation Analysis (MFDFA), though 
far more complex than monofractal ones, may be used to investigate the scaling properties to rule 
out multiple scaling effects (Barabasi and Vicsek, 1991; Kantelhardt et al., 2000 and 2002; 
Kavasseri and Nagarajan, 2005). The data sets used in the present study were limited to 2000 
data points. It has been pointed out earlier that short data lengths can induce finite size effects in 
to the results obtained from time series analysis tools such as DFA. Thus, further analysis is 
required on longer data sets to rigorously corroborate the scaling results obtained in this study. 
 
Conclusion 
 
 DFA technique has considerable potential for investigating long-term memories in 
hydrological processes. Though it has been used in some hydrological contexts, to our 
knowledge, it has not been used to analyze long-term memory in drought data. Our analysis 
shows that the reconstructed PDSI data for the 14 selected stations, where long spans of data 
were available, had the self-similarity parameter, or the scaling exponent values between 0.5 and 
1, thus showing the possibility of long term memory in the drought occurrence. Generalization is 
possible only after analysis of additional data from other locations. Nonetheless, the DFA 
method holds strong promise for use in long-term memory investigations of hydrological 
processes  
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