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Abstract.  

The evaluation of the risk, related with water, can be possible with help of stochastic models for river 

runoff fluctuations for different averaging periods. A simple Markov chain specified by nonlinear 

regression equation with marginal gamma-distribution, describes adequately the distribution of series 

of low-flow years. Seasonal (intra-annual) low flow periods are reproduced properly by a non 

stationary periodic PARMA model. It is shown that the distribution of variables such as sojourn time 

for a river runoff (time of staying below some specified threshold level) is characterized by a 

multimodal function caused by genetic non homogeneity of runoff formation conditions in different 

seasons of a year. 

 

INTRODUCTION 

The study of the statistical structure of runoff series in the low-flow range is a key problem of 

engineering hydrology. The basis for the majority of findings obtained due to this Project, is the 

threshold level approach proposed by Eyjevich (1967) and involved investigation of the behavior of 

runoff processes in reference to some specified quantity (a threshold). In essence, this approach 

means the investigation of the distribution for excursions of the process below some specified runoff 

level. 

The estimates for such values as mean sojourn time (the time of staying below a specified level), 

obtained from small samples, exhibit an appreciable sample variance and bias (especially in the 

range of small threshold values). Having at his disposal an adequate stochastic model for the runoff 

fluctuation process, one is able to obtain the characteristics of interest either analytically or 

numerically (by means of simulation experiments). The latter approach is preferable since the 

emerging analytical difficulties are considerable while, on the other hand, there is a wealth of 

experience in hydrology of constructing stochastic models. Of course some additional technical, 

mathematical and other problems can arise because reliable methods of constructing stochastic 

models are still not sufficiently advanced especially if time intervals between observations are 

shorter than a year (seasons, months, and shorter) when the stationarity hypothesis is not valid. 

The procedure of stochastic modeling simulation consists of four stages: identification of 



mathematical model; statistical estimation of unknown parameters of the model; numerical 

simulation of artificial time series; verification of the results. 

 

ANNUAL RUNOFF TIME SEMES 

 Mathematical model and simulation procedure. 

When describing statistical regularities of long-term annual runoff fluctuations, it is reasonable to 

restrict oneself to the class of Markov processes (or more precisely, simple Markov chains since the 

time parameter t is integer). The characteristic feature of such processes is that a joint probability 

distribution function for two consecutive time instants defines completely all the statistical 

characteristics. As a rule, the runoff probability distribution is stationary but non-Gaussian, therefore 

we consider here a general (not necessarily Gaussian) case when the joint probability distribution of 

two variables separated by a time interval t is determined by the probability density p(t, x. y) 

satisfying the Markov equation 
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which specifies a stationary Markov process. Let, in addition, p(x) be the corresponding marginal 

probability density. Consider the following integral equation: 
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If some additional conditions for p(t,x,y) are satisfied (for our applied purpose we may assume this to 

be true), then this equation has a denumerable set of eigenfunctions )(xk  corresponding to numbers 

)(trk . The following theorem (O.V.Sarmanov,1961) provides a basis for constructing the probability 

density for such a process:              ' 

Theorem.     A necessary and sufficient condition for the probability density to satisfy the Markov 

equation (1) is that the following conditions be valid: 

1) eigenfunctions )(xk , k=l,.2,.,. do not depend on the parameter t; 

2) eigen correlation junctions )(trk  are exponential functions: 
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where k are positive numbers and 
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 in other words, p(t, x, y) must be a sum of the form: 

 







 







1

)()(1)()(),,(
k

kk

t
yxeypxpyxtp k                         (5)  

To construct a two-dimensional density p(t,x.y), one needs to specify a square domain (a<x, y<b) (a 

and b, may be infinite), a nonnegative weight function p(x) (a marginal probability density), and a set 

of functions )(xk , k=1,2,.., which are orthonormal on the interval (a, b) with the weight function 

p(x). If there exist values k  > 0 such that such that the series (5) converges to a nonnegative, for all 

t >0, function p(t, x, y), then the sum of the series is the probability density of a Markov process. 

In what follows, we consider mainly two forms of the decomposition (5); employing orthonormal 

bases of either the Laguerre or the Legendre polynomials. Let  first p(x) be the gamma-distribution 

marginal density: 
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commonly used in hydrological applications. If we take a set of normalized generalized Laguerre 

polynomials as functions )(xk , and some positive number R<1, then it is easy to obtain from (5) 

the following expression for the joint probability density of the stationary Markov Chain x(t), (t -

1,0,1, 2,… 

 







 







1

11 )()(1)()(),(
k

kk

k yLxLRypxpyxf   ,                                      (7) 

where x=x(t), y=x(t+1), and R equals to the correlation coefficient between two consecutive values 

of the Markov chain. 

Secondly, let the functions )(xk , be Legendre polynomials Pk(x) orthononnalized on the 

interval (0,1) with the constant weight p(x)=1/2. Then the formula for p(x,y) can be written as 

follows (O.V.Sarmanov, 1961): 
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We emphasize that both the formulas (7) and (8) imply (0. V. Sannanov, 1961) that, for these two 

examples, the general regression equation for two variables x(t) and x(t+l) should be linear which is 

not necessarily true for runoff series. That's why the model (7) is rarely used for modeling such 

series. On the other hand, D.Ya. Ratkovich (1976), who had analyzed long-term (40 years length) 

runoff records throughout the world, came to a conclusion that the transformed variables, F(x), 

where 
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obey the linear regression equation better. As for the variable F(x), it is known to be uniformly 

distributed on an interval (0,1), therefore the Markov chain F(x(t)) may have the probability density 

(8) and can be modeled using the linear regression equation. Finally, the appropriate transformation 

of these variables should be made to transfer to gamma-distributed variables with the probability 

density (I. 0. Sarmanov, 1973): 
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where x=x(t), y=x(t+1), λ- is the correlation coefficient between F(x(t)) and F(x(t+1)). As the result, 

we have developed the procedure for modeling a stationary Markov chain with gamma-distribution 

marginal densities and nonlinear regression equation. 

Fig.1 demonstrates the distinction between the linear (4) and nonlinear (6) models. Here are shown 

level curves and regression lines for the probability distributions in question. 

 

Application to the problem of permanent series of low-flow years. 

The stochastic nature of river flow fluctuations may lead to the occurrence of long series of low-flow 

(drought) years. To define the probability distribution of low-flow series length, we should consider 

the Markov Chain with two states, corresponding to two alternative events: "runoff value exceeds the 

threshold T" and "runoff value is below T" (i.e., the year is low-flow) with unconditional 

probabilities (1-Q) and Q, respectively. Our purpose is to calculate the probability P(m) that the 

series of low-flow years has exactly the length m which is: 
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where Ru is (conditional) probability of low-flow year under the condition of wet year, and S is 

(conditional) probability of low-flow year under the condition of low-flow year. All these 

probabilities can be calculated from the probability density p(x,y)  
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SEASONAL STOCHASTIC MODELS 

Characteristic features of monthly averaged runoff series and the requirements on the class of 

models. Analysis of autocorrelation function of monthly runoff series (ACF) shows that now the 

variable x(t) is generally determined by two or more preceding variables: x(t-1), x(t-2), ... rather than 

by x(t) only. Therefore, we cannot restrict ourselves to the class of simple Markov chains and choose 

the wider class. For simplicity, we consider linear schemes only: 
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where a(t) is a white noise. 

As a consequence, we must impose the restriction on the modeled variables to be Gaussian because it 

is the only class known to admit linear transformations like (15), So, we have obtained the well 

known class of autoregression models of order p, AR(p) with  the parameters  p ,...,1  to be 

estimated along with the variance of the white noise a(t) and the autoregression order p. 

As soon as the Gaussian time series z(t) (with zero mean and unit variance) has been modeled, the 

final step should be made consisting of the transformation (of z(t)) into the series x(t) imitating the 

runoff series with the variables x having the three-parametric gamma-distribution as their marginal 

distribution (and, by the reasons explained above, linked with each other by the nonlinear regression 

equation (Bolgov, 1996). 

The shape of the correlation functions calculated from the normalized data z(t): 
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evidences that the correlation structure differs noticeably for different reference months (i.e. for 

different t), especially for different reference seasons. This is the case for any region without regard 

to the value of its characteristic correlation R(1) (see section above), and is due to differences in the 

genesis of runoff formation during different seasons of a year. Indeed, spring-flood runoff is weakly 

correlated to preceding water discharge, The ACF for flood reference months decay rapidly. 

For rivers which are predominantly rain-fed in the warm season, the rapid decay of ACF is typical 

for all flood months. After cessation of flood period these ACF become flat. 

On the contrary, the stable-runoff periods are characterized by significant correlation 

coefficients between adjacent months and a slowly decreasing correlation function (in the whole) 

which can be naturally clearly explained by the prevalence of the underground feeding component in 

this period. Drought months have minimum value of autocorrelation preliminary flood months. 

Similar minimum correlation can be traced also with the same month season but a year earlier. 

Regionally averaged estimates of monthly runoff ACP differ distinctly for different regions for large 



(a year and larger) time shifts depending on the correlation R(1) between adjacent years. The 

following regularity can be observed: if the correlation R(1) is negligible, then all the ACF for 

monthly runoff, even for stable feeding seasons, are close to zero for time shifts exceeding a year. 

On the contrary, if R(1) is not small, then the greater it is, the slower ACF decreases for large shifts 

τ. 

Our examination and modeling results have shown that, for stable feeding seasons, the runoff 

process exhibits a long "memory" (reflecting the genetic features of its formation), which must be 

taken into consideration to reproduce correctly the behavior of processes in question when 

developing the models to be employed in applied problems. 

The analysis made above implies that the monthly runoff time series can be treated as a periodically 

stationary random process (with the period of 12 months). So, the parameters of the proposed above 

autoregression scheme (including the order p) should periodically depend on reference time t, and 

the model is called a periodic autoregression (PAR) model. Moreover, the transformation from 

normal to gamma-distributed variables also varies periodically with t which fact is taken into account 

in (Bolgov, 1996).  

APPLICATION 

Having at our disposal the stochastic model of seasonal runoff fluctuations, we are able to 

proceed to study such characteristics as sojourn time (the time of staying below a specified level, in 

other words, the duration of the deficit period). The corresponding analytical problem being difficult 

to solve because the model is rather complex, we use the imitation method. So we model an artificial 

series of 10000 years length (using the method recommended above) for a small catchment in the 

Central European Russia. On the basis of the modeled series, the probability distribution for sojourn 

time has been obtained. Fig 2 gives probability densities for duration for several specified levels. 

These curves have complicated multimodal shapes caused by genetic non homogeneity of the runoff 

process in different seasons. 

 

Amu-Darya example. 

Autocorrelation functions. 

 A hydrological problem, like the one considered, puts demands on the model used for 

reproducing the characteristic features of the observed series in the wide range of periods including 

time scales from one month up to several (at least two) years. The fact that in the majority of cases 

the significant value of the inter –annual correlation, r(1) must be taken into account, along with a 

complicated (non-monotonous) behaviour of the correlation function r(t) for a period less than a 

year, can lead to rather high values of the order p of the PAR(p) model. To prevent this undesirable 

situation, we propose to abandon the PAR class by adding a proper white noise to the PAR –process 



z(t) thereby entering a wider class of PARMA models: 
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This approach seems to be preferable to the alternative ones, which are rather artificial. The 

model parameters were determined by the least square method. Their values are presented in Table 1 

for some regions. It should be mentioned that the use of individual sample correlation functions is 

unacceptable for two main reasons: computational instability of the Yule-Walker equations in our 

case and significant errors in sample estimates. Having this in mind, we used the regionally averaged 

autocorrelation functions (ACF). 

The experience of constructing a stochastic nonstationary periodically correlated model of 

runoff, using the so-called PAR model, showed that satisfactory results might be obtained for snow-

fed rivers. The tests applied showed a satisfactory agreement of the parameters and properties of the 

observed and simulated series. 

 

Table 1. The parameters of the PARMA model for Darganata gauge station. 

Month Average Coef. of 

variation 

Cs/Cv 

asymmetry 

Mean 

square 

deviation 

Parameters of  (17) r(1) 

a  

1 622 0.31 1.0 193 0.74 0.10 0.67 

2 505 0.39 1.0 196 0.68 0.21 0.55 

3 504 0.43 3.0 217 0.80 0.47 0.50 

4 758 0.58 2.0 437 0.60 0.10 0.55 

5 1490 0.46 0.5 681 1.00 0.43 0.65 

6 1920 0.41 0.5 786 0.98 0.29 0.73 

7 2400 0.43 0.5 1035 0.89 0.10 0.81 

8 1760 0.35 0.5 611 0.92 0.10 0.83 

9 1014 0.42 0.5 422 0.80 0.10 0.72 

10 618 0.32 0.5 197 0.79 0.16 0.67 

11 568 0.28 0.5 160 0.60 0.10 0.55 

12 708 0.23 0.5 162 0.60 0.10 0.55 

 

Preliminary results.  

 



The first results of the simulation activity include 2000 years time record (monthly runoff, 

discharges), which was received with help of imitation procedure. We have used periodically 

correlated stochastic model. After that we have processed observed data and artificial data too. On 

the figures 3 and 4 there are  the density of distribution for the deficit duration for a few levels. The 

probability of this levels where assigned as a quantiles of the probabilities distribution of the annual 

river runoff.  It is cleare from figures that Imitation approach will allow us to reseive more stable 

results. 

So, we have the long time simulated record and we can use it in water-balance calculation for 

Tuya-Muyun reservoirs (for risk evaluation).  

 

Density of the distribution of the deficit duration

(Amu-Darya - Darganat, observed data, 26 years)
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Density of the distribution of the deficit duration

(Amu-Darya - Darganat, simulated data, 2000 years)
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CONCLUSION 

Study of low-flow fluctuations by stochastic modeling leads to the following results. 

 

1. The model of simple Markov chain with marginal gamma-distribution and nonlinear regression 

equation connecting two adjacent variables, can be used to describe the distribution for the series of 

low-flow years. 

2 On the basis of the nonstationary periodic model consisting of the set of 12 equations 

corresponding to 12 months, the sequence of low-flow periods can be adequately reproduced. In 

general, the model is the mixture of white noise and simple Markov chain with a slowly decaying 

correlation function. 

 3. The probability distribution of the variables like the sojourn time, is characterized by a 

complicated multimodal probability density caused by the genetic nonhomogeneity of the runofl 

formation conditions during differentseasons^and by the periodic correlations. 
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Figure I. Level curves of equal probability density for the two-dimensional gamma-distribution when 

both the correlation coefficient and the coefficient of variation are 0.5 for the linear (a) and nonlinear 

(b) Markov model. 



 

       

Figure 2. Probability densities of sojourn time (the time of staying below the specified level T) for 

the periodically correlated river runoff process. The level is given in percentage of the 

runoff norm Xo: 

1 - 100% Xo, 2 - 75% Xo, 3 - 50% Xo, 4 - 25% Xo, 5 - 20% Xo, 6 - 10% Xo, 7-

5%Xo,8-l%Xo. 
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