

Comparative adsorption of levodopa from aqueous solution on different granular

OULOUSE QUESADA- PEÑATE Isariebelª, JULCOUR-LEBIGUE Carine°, JÁUREGUI-HAZA Ulises-Javierª, WILHELM Anne-Marie^b et DELMAS Henri^b

a: Centro de Química Farmacéutica, Calle 200 y 21. Atabey, Playa. Apdo. 16042, C. Habana, Cuba; Email: isariebel_quesada@yahoo.es,

isariebel_quesada@cqf.sld.cu b: Laboratoire de Génie Chimique, 5 rue Paulin Talabot, 31106 Toulouse, France; Email: henri.delmas@ensiacet.fr

Introduction

*The occurrence of pharmaceuticals in the aquatic environment is a rising problem

The threefold increase in drug consumption in the next 22 years will make it even more critical *Considering the potential impacts of pharmaceutical products, it is highly important to remove them from wastewater before discharge

Levodopa: One of the several drugs used to control symptoms of Parkinson's disease *Great influence of chemical surface composition on adsorption mechanism.

Goals: * Determination of adsorption isotherms of levodopa from aqueous solution onto three activated carbons. * Evaluation of five models to fit the experimental data.

* Relationships between chemical composition of carbon's surface and adsorption

Experimental								
Adsorption conditions: Temperature: 25°C (thermostated bath). Time: 18 h. 100 mL of solution (initial concentration between 0.031g/L and 1.281 g/L) Three activated carbons (ACs) from different source materials: • Coconut shell carbon: S23 (0.05 g)		Specific surface area m ² .g ⁻¹	Microporous volume* cm ³ .g ⁻¹	Mesoporous volume** cm ³ .g ⁻¹	C _a mmol. g ⁻¹	C _b mmol. g ⁻¹	Total surface groups $(C_a + C_b)$ mmol. g ⁻¹	pH _{PZC}
 Wood carbon: L27 (0.1 g) : Casuarina carbon: C1 (0.05 g) 	L27	1860	0.77	0.48	2.108	0.798	2.906	6-6.2
Analysis: HPLC-UV (wavelength 278 nm), C18 reverse phase column (ProtonSIL C18 AQ), eluent: water-acetonitrile (90:10), 0.25 mL/min	S23	1175	0.47	0.05	0.397	0.958	1.355	9-9.1
Activated Carbons characterization: Nitrogen sorptometry (ASAP 2010 analyzer).	C1	1230	0.53	0.26	0.125	2.125	2.25	11
Surface groups determination by Boehm method		 calculated from Horvath-Kawazoe model ** calculated from Barret-Jovner-Halenda method 						

Surface groups determination by Boehm method Point of cero charge (pH pzc)

Results and Discussion

Adsorption isotherm models

Model	Equation				
Langmuir	$q = (q_{\max} KC)/(1 + KC)$				
Jovanovic	$q = q_{\max} \left(1 - e^{-(KC)} \right)$				
Freundlich	$q = K (C)^{\gamma}$				
Redlich-Peterson	$q = (aKC)/(1 + K(C)^{\gamma})$				
Khan	$q = (aKC)/(1 + KC)^{\gamma}$				

q: weight of adsorbed compound at equilibrium per unit weight of AC; qmax: monolayer capacity; C: concentration of adsorbate in aqueous phase at equilibrium; y, K, and a are model parameters.

Optimization: non linear regression (method of least squares).											
Parameters	L27 Carbon	S23 Carbon	C1 Carbon	Parameters	L27 Carbon	S23 Carbon	C1 Carbon				
1- Langmuir			4-Redlich-Peterson								
q _{max} (mg/g _{AC})	317.9 ± 24.6	285.3 ± 26.4	393.3 ± 23.8	$a (mg^{\gamma}.L^{1-\gamma}.g_{AC}^{-1})$	72.3 ± 12.3	132.9 ± 14.0	224.3 ± 24.8				
K (L/mg)	0.015 ± 0.004	1.12 ± 0.84	0.88 ± 0.69	$K(L^{\gamma}mg^{\gamma})$	0.18 ± 0.07	28.5 ± 66.3	56 + 44				
RSS	5352	44384	26380	γ(-)	0.77 ± 0.03	0.86 ± 0.02	0.90 ± 0.02				
AIC _e	116.5	172.0	136.0	RSS	383	2616	2566				
AARE	17.6	16.5	10.3	AIC	66.6	112.5	97.0				
	2- Freundlich			AARE	4.1	5.1	3.1				
$K (mg^{1-\gamma}.L^{\gamma}.g_{AC}^{-1})$	35.1 ± 6.1	128.0 ± 8.6	196.1 ± 20.7	5-Khan							
γ(-)	0.34 ± 0.03	0.15 ± 0.01	0.12 ± 0.02	$a (mg/g_{AC})$	108.1 ± 20.7	84.1 ± 35.1	1873+371				
RSS	3190	2759	5086	K (L/mg)	0.10 ± 0.04	25.4 ± 52.1	55 ± 43				
AIC _c	106.1	110.9	106.4	γ(-)	0.75 ± 0.03	0.86 ± 0.02	0.90 ± 0.02				
AARE	13.7	5.4	5.1	RSS	478	2569	2465				
3- Jovanovic			AIC	71.0	112.1	96.3					
q _{max} (mg/g _{AC})	278.5 ± 26.6	278.4 ± 27.8	388.1 ± 26.2	AARE	47	5.0	3.0				
K (L/mg)	0.012 ± 0.004	0.99 ± 0.63	0.67 ± 0.44								
RSS	12969	53866	33966	T							
AIC _c	134.2	176.3	140.6	AICc: the co	orrected Akail	ke information	n criterion				
AARE	24.8	18.6	12.2	AADE: avanage of absolute relative errors							

TGA spectra

They reveal a distinct behaviour of L27 carbon and confirm the results of Boehm titration with an increasing weight loss from S23, C1 to L27 AC.

Conclusions

The adsorption of levodopa is clearly disfavored by the presence of acidic groups as lower levodopa uptake is found with L27 AC despite a higher surface area. Comparing C1 and S23 ACs which have similar specific surface area (and low amounts of acidic surface groups), it is observed that the adsorption capacity is positively influenced by the presence of basic surface groups. While the surface of L27 may be essentially in the neutral form (pH ≈ pH_{pzc}), the surface of S23 and C1 carbons is positively charged $(pH < pH_{PZC})$, which contributes to enhance adsorption of levodopa which has a 1st pK_a value equal to 2.3 (corresponding to COOH function) and is partially dissociated in the solution $(pH > pK_{a1})$

Acknowledgments

The authors express their gratitude to ALFA-Programme of the European Community, INP-ENSIACET, the Ministry of Public health (Cuba) and Agence Nationale pour la Recherche (Preccod) for financial support, Pica (Veolia group) for supplying S23 and L27 ACs and CIPIMM for supplying