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ABSTRACT 
The Metropolitan Region of Fortaleza, with its 2.5 million inhabitants, is located in the 
state of Ceara, a semi-arid region of Brazil, and obtains water for domestic and industrial 
purposes through the use of a complex system of reservoirs, which are linked by canals 
and water pump stations, bringing water from different basins within the state. The 
system consists of 5 reservoirs, 5 pumping stations, and a long canal (102 km) that 
diverts water from the Jaguaribe River basin, a large and agricultural basin in which the 
largest reservoirs of the State, with inter-annual storage capacity, are located. The system 
is operated to meet domestic and industrial demands of the Metropolitan Region of 
Fortaleza. Current operating policy employed by the water management agency of the 
state, responsible for the system operation, is based on a relatively simple set of rules 
bused upon current water storage in each reservoir. This paper focuses on the 
optimization of the reservoir’s system operation, based upon a multi-objective approach, 
to derive new operating policies for the system. The multi-objective optimization 
procedure employs goals that are often considered in the water management process, 
namely, minimizing both the pumping cost and the amount of water losses through 
evaporation. The latter is justified by the extremely large potential evaporation rate 
observed in the region and the relatively different area-volume curves of these reservoirs. 
The paper develops and employs a new multi-objective version, based on the Pareto 
dominance concept, of the single-objective evolutionary algorithm Honey-Bee Mating 
Optimization (HBMO) and the Multi-objective Particle Swarm Optimization (MOPSO). 
Results based on a 25 year-validation period show that the use of a new operation policy 
derived in this study, based on a possible solution of the Pareto front, provides an 
economy of up to 4% in pumping costs (minimum cost) and a reduction of water losses 
through evaporation of 16% at most (minimum evaporation loss). Moreover, the 
methodology provides an approximation of the Pareto front of both objectives, which 
permits water managers to think more deeply about the value of water that is evaporated 
and the costs of trying to avoid these losses.   
 
1- INTRODUCTION 
 
The definition of how to operate a system with several reservoirs is a complex task 
because it includes many technical, social and political aspects, and involves multiple 
inter-related decisions in time (Loucks and Van Beek, 2005; Oliveira and Loucks, 1997). 
One important aspect of this complexity is the existence of multiple objectives, usually 
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conflicting ones, such as meeting water supply and irrigation demands, energy 
generation, maintenance of aquatic species, flood control, navigation, etc.  
 
Defining reservoirs’ operating rules usually means to specify the volume of water that 
should be released by each reservoir over time. These rules are often specified in order to 
maximize or minimize one or more objective function that translates the objectives of 
operating a reservoirs’ system. This optimization study has to respect some constraints, 
such as reservoir storage capacity, maximum pumping rate, maximum flow rate, 
minimum flow in river, etc. As the system gets more complex, it becomes very hard to 
fin an optimal operating policy for the system. 
 
There is a vast literature in optimization of reservoir operation. In the last decade, there 
has been observed a great effort of the community to develop global search algorithms. 
Within this class of algorithms, there is a class of evolutionary algorithms that has been 
apllied quite successfully in many engineering problems [Fonseca and Fleming, 1993; 
Horn et al., 1994; Srinivas and Deb, 1995; Zitzler and Thiele, 1998; and Deb, 2001]. 
These algorithms have some advantages over some classical optimization techniques, for 
example, the direct use of the objective function, which avoids the computation of 
complex derivatives. Besides, these algorithms allow a more comprehensive investigation 
of the parameter space at each iteration, reducing the chances of being trapped in a local 
minimum (maximum). Their intrinsic stochastic nature provides a more diverse 
population of possible solutions, allowing the construction of a Pareto front in a single 
run of the algorithm, which makes them a good option for multiobjective problems. 
 
This paper develops a multiobjective version of the uniobjective evolutionary algorithm 
named Honey-Bee Mating Optimization (HBMO), first presented by Haddad et al. 
(2006). This multiobjective version of HBMO, called herein MOHBMO, is employed 
along with the Multiobjective Particle Swarm Optimization (MOPSO) algorithm, 
developed by Kennedy and Ebhart (1995), to derive new operating policies for the 
reservoir’s system that supply water for the Metropolotina Region of Fortaleza (RMF) 
and other smaller local demands. The optimization study presented here employs two 
different objective functions, one related to the total pumping costs of the system, while 
the other is concerned with the total amount of water that is lost by evaporation. The 
trade-off between these two objectives obtained form this study is of great value for the 
water managers as they will be able to think more carefully about these issues. 
 
The paper starts with a description of the reservoirs’ system, including a discussion of 
how the system works, followed by a discussion of the structure of the current operating 
policy employed by the water management company of the State of Ceará, responsible 
for the operation of the system. The paper continues with a description of both 
evolutionary algorithms employed in the study, including a brief discussion about the 
concept of Pareto optimum and Pareto front, the basis used in this study for dealing with 
multiobjective problems. Finally, a section with main results are presented and discussed, 
followed by the conclusions of the paper. 
 
 



 3

2- THE RESERVOIR SYSTEM 
 
This section presents a description of the reservoirs’ system used to provide water to the 
Metropolitan Region of Fortaleza (RMF), Brazil. The current system, with its five 
reservoirs, is linked to a much larger basin through Canal do Trabalhador, a canal that 
was built in 1993, during a severe drought period, to alleviate the water scarcity in the 
RMF and to reduce the risk of a collapse of the water supply system. Canal do 
Trabalhador diverts water form the Jaguaribe River basin at the city of Itaiçaba, near the 
estuary of Jaguaribe, downstream all the reservoirs located in this basin. 
 
The operation of the current system assumes that the diverted flow from the Jaguaribe 
basin will always be enough to meet RMF’s demands, respected the capacity of both the 
pumping station and the Canal do Trabalhador. In this study there was no concern on how 
to operate the reservoirs in the Jaguaribe River basin in order to be possible to deliver the 
necessary amount of water to the RMF. There is a study in progress that is trying to 
perform a much larger optimization study that considers not only the system of RMF, but 
also those reservoirs located in the Jaguaribe River basin. This study is important for 
planning purposes given the RMF’s water demand is supposed to increase by almost 
100% in the next 20 years. 
 
The current reservoirs’ system, presented in Figure 1, consists of five reservoirs: (1) 
Aracoiaba, with 170 hm3 of storage capacity and drainage area of 584 km2; located 
upstream of (2) Pacajus, whose drainage area is about 4,490 km2, with storage capacity of 
240 hm3; (3) Pacoti, which drains an area of nearly 1,080 km2, and is linked through a 
canal to (4) Riachão, a small reservoir, whose drainage area is of just 34 km2. Both Pacoti 
and Riachão, which have jointly a storage capacity of 380 hm3, are linked to (5) Gavião 
with 32.9 hm3 of storage capacity and nearly 95 km2 of drainage area. 
 
The system has also five pumping stations. The first one, named Itaiçaba Pumping 
Station, is used to bring water from the Jaguaribe River basin to the Pacajus reservoir. 
The Itaiçaba Pumping Station is able to divert up to 6 m3/s to Canal do Trabalhador, 
which has at the moment a maximum flow rate of 5 m3/s. Three other pumping stations, 
named PS0, PS1 and PS2, are used to bring water from the Pacajus reservoir to the Pacoti 
reservoir. PS1 operates only when the Pacajus water level is below 29.5 m. Between 
Pacoti and Riachão there is also a pumping station that operates only when the water 
level at Pacoti reservoir is below 36 m. The table below presents a summary of the 
pumping stations. 
 
Table 1: Maximum pumping flow rate 

Pumping Station Maximum flow (m3/s) 
Itaiçaba 6.0 

PS0 5.0 
PS1 5.0 
PS2 5.0 

Pacoti 5.0 
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Figure 1: Current reservoirs’ system used for water supply of the metropolitan region of Fortaleza. 
The system consists of 5 reservoirs and 3 pumping stations. The Canal do Trabalhador diverts water 
from the Jaguaribe River Basin, near the city of Itaiçaba into the Pacajus reservoir. 
 
The system operates basically to supply the demands of the Metropolitan Region of 
Fortaleza, although small local demands, in the vicinity of the reservoirs, should also be 
met.  
 
The Gavião reservoir is responsible for supplying water to the RMF’s water treatment 
plant. Therefore, the system is operated in such a way that Gavião is always able to 
deliver 8 m3/s to the plant. Besides, both Pacajus and Aracoiaba need to meet local 
demands of 0.3 and 0.2 m3/s, respectively.  
 
3- CURRENT OPERATING POLICY 
 
The reservoirs’ system is operated to meet domestic and industrial demands of the 
Metropolitan Region of Fortaleza. The current operating policy employed by the water 
management agency of the state, responsible for the system operation, is based on a 
relatively simple set of rules that relates the amount of water that should be released from 
each reservoir based upon current water storage in each reservoir. When a reservoir is 
located downstream another reservoir, its release rule depends also on the current water 
storage at the reservoir located upstream. 
 
In order to understand the operating policy, one needs to know how the system works. As 
described earlier, the Gavião reservoir is responsible for providing water to the RMF’s 
water treatment plant. The Gavião reservoir receives water only from Pacoti-Riachão 
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reservoirs, which are considered in the optimization procedure as a single reservoir given 
they are connected through a canal. Pacoti-Riachão reservoirs, in turn, receive water only 
from the Pacajus reservoir, which can be supplied either from Aracoiaba reservoir or 
Canal do Trabalhador, which brings water from the Jaguaribe River basin.  
 
Table 2 summarizes the current operating policy. Columns Q+ and Q- indicate the 
amount of water that should flow into and be released from each reservoir, respectively. 
As can be seen, these releases depend on the current water storage. One can notice that 
the operating policy presented in Table 2 doesn’t define rules for operating the Aracoiaba 
reservoir nor Canal do Trabalhador. This is the case because the operating policy 
considers both the Aracoiaba reservoir and Canal do Trabalhador as one system that 
releases water to Pacajus reservoir. Therefore, it doesn’t specify for any given situation 
how much water should be brought by Canal do Trabalhador. The rule applied in 
practice, and also employed in this study, is the following. In case the Aracoiaba 
reservoir is operating above 50% of its storage capacity, the water needed to be released 
to Pacajus reservoir is fulfilled by the Aracoiaba reservoir and nothing comes from the 
Canal do Trabalhador. In case the Aracoiaba is operating below 25% of its storage 
capacity, the Pacajus reservoir receives water only from Canal do Trabalhador. Finally, in 
case the Aracoiaba water storage is within 25-50% of its storage capacity, 50% of the 
water released to Pacajus comes from Aracoiaba and the other 50% comes from Canal do 
Trabalhador. 
 
Having said that, let us understand the operating policy provided in Table 2. For instance, 
if Pacoti-Riachão water storage is within 25-50% of its storage capacity and the Pacajus 
reservoir is also within 25-50% of its storage capacity, Pacoti-Riachão should release 8 
m3/s to Gavião so as to meet the RMF’s demand. Besides, it should also receive 4.53 m3/s 
from the Pacajus reservoir, which, in turn, should receive 2.27 m3/s from either 
Aracoiaba reservoir or Canal do Trabalhador, or a combination of both. If Pacoti-Riachão 
water storage is larger than 50% of its storage capacity, it releases 8 m3/s to Gavião but it 
does not receive water from Pacajus reservoir, which means the Pacajus reservoir doesn’t 
need water from neither Aracoiaba reservoir nor Canal do Trabalhador. On the other 
hand, if Pacoti-Riachão is operating below 25% of its storage capacity, it still should 
release 8 m3/s to Gavião reservoir, but it needs to receive 6 m3/s from Pacajus. In this 
situation, the amount of water that the Pacajus reservoir should receive depends on its 
storage capacity, If it is operating above 50% of its storage capacity, it does not receive 
water from any source. However, if it is operating within 25-50% or below 25% of its 
storage capacity, it should receive 3 m3/s or 6 m3/s, respectively, which must come from 
either from Aracoiaba reservoir or Canal do Trabalhador. 
 
Table 2: Current Operating Policy 

    Pacajus Reservoir 
    >50% 25-50% <25% 
  Q+ Q- Q+ Q- Q+ Q- Q+ Q- 

> 50% 0,00 GAV 0,00 0,00 0,00 0,00 0,00 0,00 
25-50% 4,53 GAV 0,00 4,53 2,27 4,53 4,53 4,53 Pacoti/Riachão 

Reservoirs 
< 25% 6,00 GAV 0,00 6,00 3,00 6,00 6,00 6,00 
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3- OPTIMIZATION WITH EVOLUTIONARY ALGORITHMS 
 
The study presented here employed multiobjective versions of two evolutionary 
algorithms to improve the current operating policies of the reservoirs’ system, namely, 
the Honey-Bee Mating Optimization (HBMO) and the Particle Swarm Optimization 
(PSO). This section starts with a brief description of the approach used to deal with 
multiobjective problems, and it continues with an introduction of both HBMO and 
MOPSO, and their multiobjective versions. 
 
3.1 – Multiobjective Approach 
 
Unlike in the uniobjective case, in a multiobjective analysis, the choice of the best 
solution is no longer possible. The literature presents many different methods to deal with 
multiobjective decisions. This study applies the concept of Pareto dominance.  
 
Suppose one wants to minimize several objective functions, 
 

)](...)()([)(min 21 xxxx Mffff =  (1) 
 

where )(xif  is the ith objective function and x is the vector that contains a possible 
solution to the problem. In the reservoir operation, x may contain the releases of all 
reservoirs over time. 
 
According to Alvarez et al. (2005), two different solutions, u and v, may be related in the 
following ways, 
 

• If )()(...1|)()( vuvu iiii ffandMiff <=∀≤  or at least one i, then v is strictly 
dominated by u, represented by up v; 

• Or if Miff ii ...1|)()( =∀≤ vu , then v is said to be weakly dominated by u, 
represented by up v. 

 
In case u is not dominated by v and v is not dominated by u, it is said that u and v are 
non-dominated solutions. It is clear that multiobjective problems don’t have one single 
optimum solution, but a set of solutions that are non-dominated. This set of non-
dominated solutions is called Pareto front. 
 
Figure 2 illustrates the concept of Pareto optimum. On the left one can see the two-
dimensional parameter space with the contour plots of two objective functions and 
associated minimum points A and B. On the right, one see the same problem represented 
in the objective function space. The black line that links both minimum values represents 
the non-dominated solutions of the problem. Any solution on that line is a Pareto 
solution. 
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Figure 2: Illustration of the concept of Pareto solutions for a minimization problem with two 
objectives (F1, F2) in a two-dimensional parameter space (Δδ). Adapted from Vrugt et al. (2003). 
 
3.3 – Multiobjective Honey-Bee Mating Optimization Algorithm - MOHBMO 
 
This study employs a multiobjective version of the uniobjective Honey-Bee Mating 
Optimization algorithm introduced by Haddad et al. (2006), whose inspiration comes 
from the behavior of domestic bees. This section starts with the description of the 
uniobjective case followed by a discussion about the modifications employed to turn the 
algorithm into a multiobjective one. 
 
The HBMO algorithm starts with the generation of an initial population, which represents 
the hive. This initial population is generated randomly form a uniform distribution. Each 
solution of the initial population is assigned a fitness value given by the objective 
function.  
 
The algorithm chooses the best solution (Queen) based on the fitness value. Given the 
objective is to minimize the objective function, the best solution is the one that has the 
least fitness value. The remaining solutions are discarded and the iterative process starts.  
 
In the beginning of each iteration, the algorithm generates different solutions (Drones, D) 
based on the best solution (Queen, Q) of the previous step. The degree of dependence 
with the characteristics of the best solution changes as the process evolves. In the 
beginning, the dependence is weak, but it gets stronger with the number of steps, being 
zero in the first iteration, and 100% in the last step.  
 
Equations presented below show how the solutions are generated and how the 
dependency with the best solution is modeled. In the first case, the dependence is linearly 
related to the number of steps in the iterative process, while in the second case the 
dependency varies quadratically with the number of steps, 
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( )[ ] ( )( )[ ]NiNdNiQD /1/1 −−×+−×=   (2) 
 

( )[ ] [ ]2222 //1 NdNQD δδ ×+−×=  (3) 
 

where i is the current iteration, N is the maximum number of iterations, d is a random 
solution in the feasible space. The parameter δ is given by 
 

)1( −−= iNδ  (4) 
 

These equations show that as the iterative process approaches the final iteration, there is 
an increase in the dependency between the random solution (Drones) and the best 
solution (Queen), providing the right conditions for the convergence of the search. A 
strategy to preserve the diversity of the solutions is to set a minimum degree of 
randomness to generate new solutions (Drones). 
 
At each iteration, a selective test (mating flight) is performed so as to decide 
probabilistically whether the best solution (Queen) will receive information (mating) 
from the selected randomly generated solutions (Drones). This is done by applying an 
annealing function, also known as Boltzman probability, suggested by Abbas (2001), 
 

[ ])(/)(exp),( tSpfDQP Δ−=  (5) 
 
where P(Q,D) is the probability that the best solution Q receives information from the 
selected solution D (crossover between the Drone D and the Queen Q), Δ(f) is the 
absolute difference between fitness values of Q and D, and Sp(t) is the temperature (flight 
velocity of the Queen) of the annealing function at time t (during the flight).  
 
The annealing function clearly shows that the probability that the best solution will get 
information from the selected randomly generated solution (mating with a Drone) is 
larger when the temperature of the annealing is high (flight velocity of the Queen) or 
when the differences in fitness are small (the fitness of the Drone is as good as the fitness 
of the Queen). If P(Q,D) is greater than one, the information from the specified solution 
will be selected, otherwise, the algorithm will select the information with probability 
P(Q,D). In case the information (genetic information of the Drone) of solution is selected, 
it is storage in a repository, and the temperature (flight velocity of the Queen) of the 
annealing is reduced according to the following, 
 

)()()1( tSpttSp ×=+ α  (6) 
 

[ ] MtmMt /)()( −=α  (7) 
 
where α(t) varies form zero to one, M is the size of the repository, and m(t) is the number 
of randomly generated solutions (Drones) selected for crossover. The algorithm assumes 
that there is a maximum number of selective tests for each flight, which are related to the 
energy of the Queen. The energy of the Queen at any given iteration is given by, 
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γ−=+ )()1( tEtE  (8) 

 
where E(t+1) and E(t) are the energy of the Queen at times (t+1) and t, respectively, and γ 
is the reduction of the energy at during the time step. In this study, γ is equal to one. 
 
After the selection of the solutions, the algorithm generates new solutions by performing 
a crossover between the best solution (Queen) and the solutions contained in the 
repository (selected Drones). For the generation of each new solution, the algorithm 
randomly selects a single solution contained in the repository. 
 
The generation of new solutions employs two different crossover operators, the 
Arithmetic Crossover and the Blend Cross Over. In the beginning of the iteration process, 
both operators are equally likely to be selected. As the process evolves, the probability of 
a given crossover operator is selected depends on its performance up to the current 
iteration. The performance in this case is measured by its contribution to the generation 
of best solutions. 
 
After the generation of new solutions, the algorithm uses a mutation procedure in order to 
provide marginal improvements to the new solutions and to the best solution as well 
(Queen). The mutation is randomly applied to a given percentage of the new solutions. In 
this study, the mutation was applied to 5% of the new solutions. There is also a 
probability that mutation is applied to the best solution (Queen). Here, this probability 
was set equal to 5% as well. 
 
After mutation, the algorithm evaluates the population of solutions based on the objective 
function. If the best generated solution is better than the best solution of the previous 
iteration (Queen), the best solution is updated (new Queen), otherwise, the algorithm 
keeps the old best solution. At each iteration, all generated solutions are discarded. The 
algorithm keeps only the best solution (Queen). 
 
The process described above is repeated until a stop criterion is met. Here, the criterion 
used was the number of iterations. As an attempt to perform a more detailed search, 
Haddad et al. (2006) suggests the use of many Queens, selected based upon their fitness 
values. In this case, the process described earlier would be applied independently to each 
Queen. After each iteration, all descendants and Queens would be put together in order to 
select the new Queens. This approach of multiple Queens was used in the study. 
 
The process presented so far applies to the uniobjective case. In order to be used in 
multiobjective cases, the HBMO was modified as follows. First, after the generation of 
the initial population (hive) and the evaluation of the objective functions, it is necessary 
to select the best solution. In the uniobjective case, this selection is straightforward. 
However, in a multiobjective approach, the selection of the best solution is no longer 
possible. Here, one needs to make use of the concepts of dominated and non-dominated 
solutions, which employs the idea of Pareto front, as described earlier. So, the selection 
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of “best solutions” in the initial population is, in fact, the selection of non-dominated 
solutions or solutions that form the Pareto front. 
 
Having determined the non-dominated solutions (Queens), the iterative process starts, 
which includes the generation of new solutions (Drones) based on the non-dominated 
solutions (Queens), selection of the new solutions to be used in the crossover procedure, 
execution of crossover and mutation, and selection of new non-dominated solutions, as it 
was described for the uniobjective case. Each non-dominated solution (Queen) generates 
a number of new solutions (descendants) at each iteration. The procedures to generate 
and improve the new solutions and the non-dominated solutions are the same used in the 
uniobjective case.  
 
Having the new solutions (new descendants) and the non-dominated solutions of the 
previous iteration, the algorithm updates the set of non-dominated solutions, which are 
called Pareto front. These new solutions will be the basis for the generation of new 
solutions in the next iteration. This process is repeated until the stop criterion is reached. 
 
This approach, which uses every single solution of the Pareto front to generate new 
solutions, may lead to a situation in which there is a large and unnecessary number of 
solutions in the Pareto front causing a loss of efficiency in the algorithm. As an attempt to 
avoid this problem, a clustering technique [Seber, 1984; Spath, 1985] is used to select a 
limit number of non-dominated solutions of the Pareto front, providing a better 
distribution of solutions on the Pareto front.  
 
3.4 – Multiobjective Particle Swarm Optimization - MOPSO 
 
MOPSO is a multiobjective version of the uniobjective Particle Swarm Optimization 
introduced by Kennedy and Eberhart (1995), inspired by the behavior of social groups, 
such as those of birds, fishes and insects. The version of MOPSO employed here is the 
one proposed by Alvarez et al. (2005). This section starts with a brief description of the 
PSO followed by the modifications that were made to allow the algorithm to deal with 
multiobjective cases. 
 
Initially, the algorithm randomly generates a set of solutions (particles) within the 
feasible space. Each solution is assigned the value of the objective function, which is 
used as a metric of its fitness. Then, the algorithm selects the best solution among those 
contained in the initial set of solutions. In this case, the best solution (individual) is the 
one that has the least value of the objective function. The algorithm also considers the 
best solution as the best global solution (Swarm leader).  
 
The algorithm uses the concept of best individual of each solution (particle), which is the 
best position up to the current iteration in the evolution of the search. In the beginning, 
the best individual of each solution is its initial value.  
 
Each particle (solution) of the swarm of N particles has a current position, at the current 
iteration, and a given velocity, which is updated according to the particle’s and group’s 
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experiences. This way, a vector x that contains the positions of all particles of the 
population can be computed at each iteration as follows, 
 

)()()()1( tttt vxx εχ ++=+  (9) 
 
where )1( +tx  and tx  are the vectors that contain the positions of the N particles 
(solutions) at iterations t and t+1, respectively, )(tv  is the vector whose elements represent 
the velocity of the N particles, χ is a factor that controls the magnitude of the velocities 
(between 0 and 1), and )(tε  is a small stochastic perturbation known as “turbulence 
factor”, which helps the algorithm to avoid local optima and to increase the diversity of 
the search. 
 
The velocity of each particle is updated at each iteration by the combination of two terms: 
the best position of the particle, contained in the vector P, which explores the best result 
experienced by the particle up to the current iteration, and the best global position, 
contained in the vector G, which is the best solution found up to this iteration by the 
whole population. The velocity vector of size [N,1] is computed by the following 
expression, 
 

)()( )(
22

)(
11

)()1( tttt xGrcxPrcvwv −××+−××+×=+  (10) 
 
where w  is the inertia of the particle, 1c  and 2c  are constants that control the influence 
of the individual and global velocities, and 1r  and 2r  are uniformly generated random 
numbers between [0, 1]. This study employed the following values of these parameters: 
c1 = c2 = 1, and w  varying linearly between 0.95 and 0.4 in the first 70% of the 
maximum number of iterations, and equal to 0.4 for the remaining iterations. 
 
The algorithm runs until the number of iterations reaches the maximum number of 
iterations specified by the user. 
 
The PSO has provided good results for uniobjective problems. More recently, many 
authors have proposed modifications in the algorithm in order to be used in 
multiobjective frameworks [Coello and Lechuga, 2002; Hu and Eberhart, 2002; 
Parsopoulos and Vrahatis, 2002; Fieldsend and Singh, 2002; Alvarez et al., 2005]. This 
study used the methodology proposed by Alvarez et al. (2005). 
 
The main difficulty of using PSO in multiobjective problems is how to select the 
components that guide the particles. In PSO, at each iteration, particles are modified 
according to the best position that the particle experienced in the previous iterations and 
the best global position. If a new position of a particle is better than its best position up to 
this iteration, the best position of the particle is updated (Li, 2003). In this case, the best 
position of a particle has no relation with other particles of the same population. 
However, in the multiobjective framework, in which the objective is to obtain a set of 
non-dominated solutions (particles) that form the Pareto front, it is mandatory that all 
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particles share information with each other. Like in the MOHBMO described earlier, 
there is clear definition of best of the particle and global best solution. 
 
The algorithm proposed by Alvarez et al. (2005) basically consists of building a Pareto 
front at each iteration. The Pareto front is then updated at each iteration with the inclusion 
of the new set of dominant particles (solutions) and removal of dominated particles 
(solutions). This process is repeated until the maximum number of generations is reached. 
 
The algorithm starts with the random generation of a vector of positions of particles. At 
each iteration, one needs to evaluate if the new of position of each particle, obtained by 
equations (9) and (10), is dominated by the best position of that particle up to the current 
iteration. In case the new position is not dominated, the best position of the particle is 
updated.  
 
In MOPSO, each particle has a best global solution associated to it. The selection of this 
best global solution is based upon a random selection from the solutions contained in the 
Pareto front in case the particle is part of the front. If the particle is not contained in the 
Pareto front, the random selection is made among all particles that are dominant. 
 
4- RESULTS 
 
This section presents the main results of the optimization study to derive the new 
operating policy of the reservoirs’ system of the Metropolitan Region of Fortaleza. Due 
to the lack of space, it was not possible to provide the details of the study. Those 
interested in a more deep analysis of this case are referred to Barros (2007). 
 
The study used a record of 85 years of inflow data available for all reservoirs. The last 60 
years of data were used to derive the new operating policy of the system, while the first 
25 years were employed to evaluate and compare the performance of both evolutionary 
algorithms and both operating policies, the current one used by the water management 
company of the State and the one obtained in this study. 
 
As it has been said before, the study employed two objective functions: (1) minimize the 
total pumping costs of the system, and (2) minimize the total amount of water evaporated 
during the simulation period. 
 
The five pumping stations have different cost structures. Energy prices also vary 
seasonally. All these details were considered in the study. A more detailed description of 
the costs can be found in Barros (2007) and FUNCEME (2007). 
 
Figure 3 presents the Pareto fronts obtained by both algorithms, MOHBMO and MOPSO, 
during the 60 year-optimization period. In fact, the figure shows 10 Pareto fronts for each 
algorithm given the study has been done with 10 different initial populations. One can see 
that MOHBMO, at least when 100,000 evaluations of the objective functions were 
allowed, provided better results than those obtained by MOPSO. MOHBMO was able to 
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provide solutions with the least pumping cost and the least amount of water lost by 
evaporation.  
 
This result does not provide the final operating policy of the system given one still needs 
to pick a solution. Nonetheless, the Pareto front provides very interesting insights 
regarding both objectives. There is a strong feeling among water professionals that the 
water should be used in the most efficient way. Since the region presents a very large 
potential evaporation, water losses through evaporation is always a concern. This figure 
shows clearly that there is a cost for trying to avoid evaporation losses. This information 
is certainly valuable for those responsible for the operation of the system.  

 
Figure 3: Pareto front obtained by MOHBMO and MOPSO with 10 initial populations and 100,000 
evaluations (fo1 = pumping costs; fo2 = water evaporated). 
 
In order to able to compare the results obtained by this study with the results of the 
current operating policy, a minimum pumping cost solution was chosen. This solution 
indicates the operating policy presented in Table 3.   
 
Table 3: Operating policy obtained by MOHBMO with minimum pumping cost. When Aracoiaba is 
above 24% of its storage capacity, only Aracoiaba supplies water to Pacajus, otherwise Canal do 
Trabalhador supplies water to Pacajus up to 5 m3/s. If necessary, the remaining amount of water 
comes from Aracoiaba. 

    Pacajus Reservoir 
    > 49% 27 – 49% ≤ 27% 
  Q+ Q- Q+ Q- Q+ Q- Q+ Q- 

> 42% 0,01 GAV 0,45 0,01 0,74 0,01 3,34 0,01 Pacoti/Riachão 
≤ 42% 5,60 GAV 1,30 5,60 5,06 5,60 5,18 5,60 

 
Results based on simulation of the system for the 25 year-validation period shows that the 
optimized operating policy presented in Table 3 is better than the current policy presented 
in Table 2. The new operating policy obtained by MOHBMO provides a reduction of 
about 4% in total pumping costs during the validation period and 5% in the optimization 
period. Besides, the use of the current operating policy resulted in failures to meet the 
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demand in four months during the validation period and 8 months during the optimization 
period, while the use of the optimized policy resulted in only one failure during the 
validation period and none during the optimization one. 
 
5- CONCLUSIONS 
 
This paper develops and employs a multiobjective version, based on the Pareto 
dominance concept, of the uniobjective evolutionary algorithm Honey-Bee Mating 
Optimization (HBMO) and also uses the Multiobjective Particle Swarm Optimization 
(MOPSO) algorithm to derive new operating policies for the reservoirs’ system of the 
Metropolitan Region of Fortaleza, Brazil. 
 
This optimization study was based on the same decision structure of the current operating 
policy employed by the water management company of State. Current operations are 
based on a relatively simple set of rules that define the releases of each reservoir based 
upon the current water storage in one or more reservoirs, depending on its specific 
location within the system. 
 
The goal of the optimization study presented here was to redefine the values of the 
current operating policy in order to minimize both the total pumping costs and the 
amount of water lost by evaporation, while meeting the water demands from the 
Metropolitan Region of Fortaleza. 
 
Results based on a 25 year-validation period show that the total pumping costs can be 
reduced by 4% when the minimum cost objective function is used to define the best 
operating policy. This is an important reduction if one takes into account that the 
structure of the current operating policy has been preserved, and only the values of the 
releases and the ranges of water storages for each reservoir have been optimized. It is 
likely that a new structure of the operating policy can provide a more drastic reduction in 
costs and evaporation losses. 
 
A different solution in the Pareto front, in the opposite direction of the minimization of 
pumping costs, is able to reduce the amount of water from evaporation by 16%, certainly 
not a negligible amount. However, the Pareto front indicates a clear trade-off between 
reducing pumping costs and reducing the amount of water evaporated from the 
reservoirs. No decision has been made to define the best strategy. The main result is the 
Pareto front that provides the necessary elements for the managers of the water 
management company to think more deeply about these issues. 
 
Finally, some discussions were made regarding the capabilities of both algorithms in 
constructing the Pareto front. In case where 100,000 evaluations of the objective function 
were used, MOHBMO was able to identify better solutions in the extremes of the Pareto 
front than MOPSO. It means that MOHBMO generated solutions that provide the least 
pumping cost and the least amount of water lost by evaporation. When 10,000 
evaluations were used, this conclusion is no longer valid. 
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