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We use nonlinear dynamics techniques in a complex non-deterministic dynamical set-
ting. Our object of study is the observed riverflow time series of the Portuguese Paiva.
The Ruelle-Takens delay embedding of the daily riverflow time series revealed an inter-
mittent dynamical behavior due to precipitation occurrence. The laminar phase occurs in
the absence of rainfall. The k-nearest neighbor (k-nn) method of prediction revealed good
predictability in the laminar regime. In the presence of rainfall the k-nn method revealed
to be misleading. We present some new insights between the quality of the prediction
in the laminar regime, the embedding dimension, and the number of nearest neighbors
considered. We find, unexpectedly, that the BHP distribution is an approximation of the
empirical distribution of the relative first difference.

1. Introduction

A direct link between the real world and deterministic dynamical systems theory is
the analysis of real systems time series in terms of nonlinear dynamics with noise. Great
advances have been made to exploit ideas of dynamical systems theory in cases where the
system is not necessarily deterministic but it displays a structure not captured by classical
stochastic methods. The application of dynamical systems methods found a firm ground
on the reconstruction theorem of Ruelle-Takens [20] and in the probabilistic justification
due to Sauer, Yorke and Casdagli ([18]). The motivation for applying methods of deter-
ministic dynamics in riverflow time series lies in the natural tendency of river systems
to present recurrent behavior (see [14], [19], [2], [11], [5]). We start by doing a Takens
delay coordinates reconstruction of the daily flow series indicating that Paiva river is an
intermittent dynamical system. This intermittent dynamical behavior is characterized by
a laminar and an irregular phase. The laminar phase occurs in the absence of rainfall and
the irregular phase occurs under the action of rain. Hence, the forcing of the dynamical
system is not of a deterministic type because rainfall is stochastic.
We present some new insights between the quality of the prediction, the embedding di-
mension, and the number of nearest neighbors considered (see [12]). The nearest neighbor
method of prediction reveals good predictability in the laminar regime. We compute the
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mean of the relative predicted first difference, for different regimes and embedding dimen-
sions. The nearest neighbor method of prediction does not exhibit good predictability
in the irregular phase indicating the stochastic predominance over the deterministic in
the irregular phase. Since 75% of data is laminar, we warn that the use of nonlinear
deterministic prediction methods can be just misleading when both dynamical regimes
are considered. In the laminar regime, the nearest neighbor method of prediction indi-
cates that the dynamics can be approximated by a one to three dimensional dynamical
system. The prediction results revealed that it is essential to know the current runoff to
predict future values. In [3], we use these results to reconstruct an approximation of the
one-dimensional dynamics of the runoff using different prediction estimators. In [3], we
discovered that the empirical distributions of the relative first difference, for some runoff
regimes, exhibit a good fit to the distribution BHP [1]).

2. Data analysis

The relevant data for this work consist of the time series of mean daily runoff of the
Paiva river, measured at Fragas da Torre section, district of Beira-Alta. The sample period
runs from October, 1st 1946 to September, 30th of 1999 for a total of 19358 observations
(see chronogram of figure 1). The Paiva river is not an intermittent river in the sense
that at the referred location and in the 53 years of observation the surface stream never
disappeared.
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Figure 1. Chronogram of the daily mean riverflow of Paiva measured at Fragas da Torre
1946-99.

The daily river flow descriptive statistics, (see Tab. 1 and figure 1) shows the strong
asymmetry of the data. We can see that there is a quite a difference in the flow between
the summer and winter meaning that there are no glaciers or dams that may give water to
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Table 1
Descriptive statistics for the daily mean riverflow series of Paiva (1946-99) measured at
Fragas da Torre.

Statistic Value

Mean 20.73 m3/s

Median 5.66m3/s

Skewness 5.3

Kurtosis 45.98

Maximum 920.0 m3/s

Minimum 0.06m3/s
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Figure 2. Evolution of Monthly Paiva daily mean runoff time series statistics.

the river in the summer (table 1, figure 1). The monthly river flow descriptive statistics,
(figure 2) shows structural differences specially between the summer and winter revealing
the dominant regimes of each season. The spring and autumn months reveal a kind of
mixed behavior in terms of runoff statistics revealing a coexistence of the two regimes.

The sample autocorrelation function (figure 3) is characterized by the usual seasonality
of this kind of data but also by an irregular behavior specially for the winter where the
correlation is positive.

The average and the standard deviation for each day of the year (see figure 5) 1 show a
strong statistical irregularity for each day of the year that increases with the runoff value.

1The 29th of February of each year were deleted.
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Figure 3. Sample Autocorrelation Function of the daily mean runoff series (1946-99) of
the Paiva river at Fragas da Torre.
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Figure 4. Histogram of the mean daily runoff series of Paiva river.
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Figure 5. Mean and standard deviation for each day of the year.
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3. Intermittent dynamics of Paiva

The dynamic characterization includes invariant estimation and in this direction we do
a correlation-integral analysis for all the data and then we consider only the runoffs less
than 20m3/s which represents about 75% of the data corresponding mainly to the laminar
phase, i. e., periods without rain. The Correlation Integral of a system is by definition
the probability of finding fraction of points observed of a set of data is given by Eq. 1.

C
(m)
N (ε) =

2

N(N − 1)

∑

1≤i<j≤N

Θ
(

ε −
∥

∥

∥X i − Xj
∥

∥

∥

)

(1)

where X t = (Xt, Xt+1, . . . , Xt+m−1) is a reconstructed vector which elements are values
of the time series, {Xt}

N

t=1, N is the number of data points of the series, Θ the Heaviside
function, ε the neighborhood radius and m the embedding dimension of the reconstructed
phase space. The sample CI is a statistic used in the correlation dimension estimation,
it was proposed by [4]. The sample CI is a statistic used in the the observed fraction of
reconstruction vectors (RV) at a distance smaller than ε. The sum, (1), is computed for
a set of distances, ε1, . . . , εn evenly spaced on a logarithmic scale. A scaling range is said
to exists if for such a range of values the sample correlation integral behaves like a power
law or the same to say like a line on a log− log scale. In practice there is a cut-off on the
radius size due to data size restrictions. Defining d(N, ε) = ∂ ln C

(m)
N (ε)/∂ ln ε, we have

that

DC = lim
ε→0+

lim
N→∞

d(N, ε) (2)

Hence, d(N, ε) is the slope of the CI curve for a certain range, and DC is then the
estimate of the correlation dimension.
In figure 6, we present the correlation integral slopes. We can distinguish three different
behaviors in the correlation-integral curve for different ranges of the radius, ε. For the
runoff values larger than 30m3/s no scaling range exists. For the runoffs in the interval
[5−30m3/s] there is a scaling range which point towards a one-dimensional attractor. This
dimension is not fractal and indicates that the behavior of riverflow for that range is close
to that of a curve. This is a sign of the existence in the reconstructed phase-space of a one-
dimensional manifold to which all the laminar phase orbits are close, i. e. the orbits are
mainly contained in a small neighborhood of a one-dimensional curve. The singular value
decomposition (SVD) analysis may be used to compare the two phases. The information
given by this analysis is highly relevant for the understanding of the correlation integral
curve. We take as vector variable the reconstruction vectors, (Xt, Xt+1, . . . , Xt+m−1),
where Xt is the daily mean runoff at day t. Using the SPAD statistical package to perform
the SVD one computes the principal directions of the data set and their corresponding
weights in the process the the principal factors are also calculated for the covariance
matrix of the laminar phase for different embedding dimensions. The percentage(%) of
the total variance explained by the three largest eigenvalues of the Covariance Matrix for
the laminar phase are presented in Table 2.
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Figure 6. Slopes of the sample correlation integral curve of the Paiva river data and for
several embedding dimensions.

Table 2
Percentage(%) of the total variance explained by the three largest eigenvalues of the
Covariance Matrix for the laminar phase.

Dimension % % %

3 96.34 2.69 0.96

4 95.01 3.23 1.13

5 93.82 3.70 1.33

6 92.75 4.13 1.50

7 91.75 4.52 1.66

The correlations between the principal components and the original variables are pre-
sented on the table 3. In the laminar phase there exists a principal component explaining
more 90% of the variance. This is explained by the laminar dynamics being close to a
segment line, figure 7. According to the usual criteria to quantify the number of signif-
icant eigenvalues, (see [17]) the reconstruction vectors (individuals) of the last two data
sets are close to the one-dimensional case.
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Table 3
Correlation between the 1st Principal Component and the original variables at the laminar
phase and for several embedding dimensions.

Variable 3 4 5 6 7

Xt 0.98 0.97 0.96 0.95 0.94

Xt+1 0.99 0.98 0.98 0.97 0.96

Xt+2 0.98 0.98 0.98 0.98 0.97

Xt+3 - 0.97 0.98 0.98 0.97

Xt+4 - - 0.96 0.97 0.97

Xt+5 - - - 0.95 0.96

Xt+6 - - - - 0.94
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Figure 7. Phase space portrait for runoff values between 1 and 2 cubic meters/s.
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4. Nonlinear prediction

4.1. Prediction results
Several authors used nonlinear prediction methods for river flow data locally in the

phase space, [7], [8], [15], [11] and [5] among others. In this work, we use a different version
of the k-nn neighbors method proposed by [9] to predict the next day runoff. Since our
goal is to predict the runoff value during the laminar regime (absence of rain) we will filter
appropriately the reconstruction vectors. Hence given the dimension, m, of the Ruelle-
Takens embedding we consider only the reconstruction vectors (Xt, Xt+1, · · · , Xt+m−1)
satisfying the following δ-relative non-increasing rule, see Eq. 3.

Xt+i−1 ≤ Xt+i(1 + δ), 1 ≤ i ≤ m (3)

where δ is a fixed positive value. In our approach the predicted value is the average of the
phase-space images of the neighbors defined as below. Other authors, [11] reported that
predictors based on the phase space average give better results than other local linear
functions. Instead of using all the neighbors within a fixed radius we have used the the
k-nn nearest neighbors with k = 10.

Table 4
Mean Square Error for the hydrological year 1997/98 one step ahead prediction and for
different embedding dimensions (m) and time delays, (τ).

τ/m 3 4 5 6 7 8 9 10

1 8.98 7.36 7.08 7.39 8.38 8.35 8.63 8.70

2 10.87 12.33 11.72 12.84 12.55 14.01 14.30 14.53

3 12.05 11.43 13.04 13.60 13.28 13.49 13.82 15.50

4 8.93 11.01 13.35 13.37 11.99 12.36 12.42 13.10

5 18.63 17.08 20.32 19.11 17.76 21.08 20.67 20.53

6 16.57 16.74 16.92 18.15 14.64 15.09 14.58 14.84

7 20.95 22.27 26.13 26.85 26.64 25.25 25.66 26.20

8 17.88 17.57 17.96 16.72 17.68 20.37 20.54 18.38

The best Mean Square Error2 (MSE) result was found for an embedding dimension 5
and for time delay of one day, (see table 4).

Here we should mention the paper on river flow prediction, [5] where the authors also
obtained results of the same magnitude for the MSE for different embedding dimensions.
As the results show, predicting locally in the phase space can be misleading if the system
has an intermittent behavior.

2The Mean Square Error of Prediction (MSE) is defined by MSE = 1

n

∑

n

i=1

(

Xt − X̂t

)

. When several

models are proposed for the same data the ultimate choice of one may depend on goodness of fit such as
the MSE.
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Table 5
Mean Relative Error (MRE) and MSE for the one-step ahead prediction for the years
1995-99 and also for the laminar regime. Several embedding dimensions were considered.

m MRE MSE

1 0.0486 2.915

2 0.0328 1.004

3 0.0301 0.888

4 0.0310 1.034

5 0.0341 1.155

6 0.0378 1.193

7 0.0427 1.375

Table 6
Percentage of Tm for each neighbors set considered RV1 - RV8.

RVi 1 2 3 4 5 6 7 8
Percentage (%) 0.5 1 5 10 12.5 15 20 25

4.2. Empirical distribution of the relative first difference
Here we will describe the empirical distribution of the relative first difference for the

laminar phase. In this analysis, instead of using all the neighbors within a fixed radius,
we use a fixed number of close neighbors, RV1, . . . , RV8, see Tab. 6. We denote the total
numbers, Tm, of filtered reconstruction vectors depending on the embedded dimension m
considered. We will only consider reconstruction vectors whose future points to a non-
increasing runoff. As a rule of thumb, we choose a 15% of increasing tolerance for runoffs
lower than 4m3/s and 5% for runoffs above that threshold. This distinction was based on
the observed effects of measurement error.
In Figure 8, we present the total number of neighbors versus the Logarithm of the last
coordinate of the reconstruction vector for embedding dimensions 1. The resulting curve
show that there is a plateau for values in the range of 3.2m3/s to 3.6m3/s.
The figure 8 gives us the variation of the relative distance of the predicted value, using
the close neighbors method with respect to the RV’s, runoff regimes. The relative dis-
tance of neighbors in the phase space increases with the runoff regime and also with the
embedding dimension. Moreover, the mean for several regimes and number of neighbors
(RVi) considered increases approximately linearly with m.

In Figure 10, we show the histogram of the one step-ahead prediction for the neighbor
sets RV1 and for the runoff regimes considered, on top of the BHP pdf. The fit is good
for the predicted case and for the regime 3 to 9 m3/s.
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Figure 8. Total number of neighbors in the phase space vs the Logarithm of the last value
of the reconstruction vector for embedding dimension 1, upper curve, and embedding
dimension 3, lower curve.

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

5.0%

0 3 6 9 12 15 18 21 24 27 30
runoff (cubic m/s)

R
el

at
iv

e 
di

st
an

ce
 (%

)

RV1
RV2
RV3
RV4
RV5
RV6
RV7
RV8

Figure 9. Relative distance (%) of RV’s as function of the last coordinate for different
neighborhoods and for dimension 1.
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5. Conclusions

A dynamical analysis of the Paiva river data was performed using the Ruelle-Takens
method of dynamical reconstruction. We concluded that the Paiva river is an intermittent
system. The laminar phase takes place in the absence of rainfall and the irregular phase
occurred under the action of rain. The nearest neighbor method of prediction revealed
good predictability in the laminar regime. However, since 75% of data is laminar, the use
of nonlinear deterministic prediction methods can be just misleading when both dynam-
ical regimes are considered. We studied the dependence of the nearest neighbors runoff
predictor on the embedding dimension and on the relative average distance of the nearest
neighbors with respect to the runoff value. The prediction results revealed that it is essen-
tial to know the current runoff to predict future values. We noticed small improvements
in prediction when the former two runoffs are used. For a special regime, the distribution
of the relative first difference predictor exhibited a good fit to the universal distribution
BHP.
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