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ABSTRACT 

The province of Manitoba, Canada, is blessed with abundant surface water resources but 
lacks in weather stations. As a result, hydrological modeling and climate change impact 
assessments for water resources management face difficulties due to limited input data. 
Recent studies suggest that the North American Regional Reanalysis (NARR) has high 
potential for use as input data for hydrological modeling and statistical downscaling of GCM 
data. 

The objective of this study is (1) to utilize the NARR data for hydrologic modeling and 
statistical downscaling of GCM data, and (2) to assess the climate change impact on 
Manitoba water resources. Two river basins in north-western Ontario were selected for this 
study. The SLURP model was set up with meteorological input data from NARR and 
calibrated for each catchment against the observed streamflow data. K-Nearest Neighbour 
(k-NN) resampling, a statistical downscaling technique, was used to downscale the output 
from the Canadian global climate model CGCM3 under the SRES A2 and B1 emission 
scenarios (2081-2100). The downscaled CGCM3 data were used as input to the calibrated 
SLURP model to assess the future climate change impact on water resources. 

The results indicate that (1) the SLURP hydrological model can be reasonably calibrated with 
the meteorological input data from NARR, (2) the results from the statistical downscaling for 
baseline climate with NARR are comparable to the NARR data, (3) the warmer and wetter 
climate in the future under the A2 scenario is likely to lead to an increase in runoff, and (4) 
the B1 scenario resulted in different runoff changes in two catchments. NARR is found to be 
a good alternative to weather station data for climate change impact studies in data-scarce 
central Canada, where higher risk of flooding and lower risk of extended droughts are 
projected due to climate change.  
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INTRODUCTION 
The province of Manitoba, Canada, has an abundance of surface water. Manitoba Hydro, 
the sole provider of energy in the province, produces more than 95% of electricity from 
hydropower generating stations on the Nelson and the Winnipeg River basins, located in 
northern Manitoba and north-western Ontario, respectively. Hydrological modelling is 
believed to be a useful tool for water resource management, but is difficult in those regions 
due to lack of reliable meteorological data.  

North American Regional Reanalysis (NARR) is “a long-term, dynamically consistent, 
high-resolution, high-frequency, atmospheric and land surface hydrology dataset” 
(Mesinger et al., 2006), and its spatial domain covers United States, Canada, and Mexico. 



The NARR data comes with 3 hourly temporal and 32km spatial resolutions (see Figure 2) 
and assimilated precipitation (Mesinger et al., 2006) which makes it superior to previous 
global reanalysis data sets from the National Center for Environmental Prediction–National 
Center for Atmospheric Research (Kalnay et al., 1996) and the NCEP–Department of Energy 
(Kanamitsu et al., 2002).However, it has rarely been used for hydrological modeling.  

Choi et al. (2007) evaluated the temperature and precipitation data from NARR by 
comparison with selected weather stations in Manitoba and concluded that they have good 
potential for use as input data for hydrological models. Kim et al. (2007) conducted a pilot 
study on evaluating the reliability of NARR data for hydrologic modelling. They applied NARR 
data to calibrate a hydrologic model and compared it to the calibration obtained with 
observed weather station data in northern Manitoba. In their study, the use of NARR data 
for hydrological modelling was found to be promising.  

 The objectives of this study are to use NARR data for downscaling GCM data and for 
hydrological modeling and to assess climate change impacts on future runoff to the study 
area. Two catchments in Winnipeg River basin located in north-western Ontario, Canada 
were modeled. This study may provide insight into climate change impact on water 
resources in data scarce regions. 

STUDY AREA  
Two catchments were selected for this study: the Sturgeon River and the Troutlake River in 
north-western Ontario (Figure 1 and Table 1). Trout River and Sturgeon River gauging 
stations are located within 50 km from the Red Lake Airport weather station and Sioux 
Lookout Airport weather station, respectively. 

 

Figure 1. Study area and NARR grid points for each basin. 



 

Table 1. Streamflow gauges in the study area. 

Station No. Name Period of Record Drainage Area(km2) 

05QC004 Sturgeon River at McDougall Mill 1961 – present  4450  

05QC003 Troutlake River above big fall  1970 – present 2370  

 

DATA 
The NARR data was downloaded by the NOAA-ESRL Physical Sciences Division, Boulder 
Colorado from their Web site at http://www.cdc.noaa.gov/. NARR data have not been 
widely evaluated, primarily because NARR is a recent product. As show in Figure 2, the 
spatial resolution of NARR is significantly higher than the resolution of GCM, which is 
directly applicable to hydrological assessments. Since the NARR data cover all over the 
North American domain distributed, it can be applied for the hyrological assessment of 
remote areas located in a distance from a weather station.  

 For hydrologic modelling and statistical downscaling, time series data of daily mean 
temperature, relative humidity, solar radiation, and daily accumulated precipitation at a 
NARR grid point for each catchment were provided. 

 

 

Figure 2. Location of Environment Canada weather stations, NARR grid points, and CGCM grid points in 
central Canada. 

 Prior to the hydrologic simulations using observed and NARR data, the two data sets 
were compared to evaluate the reliability of NARR for hydrological modelling. The observed 
daily mean temperature and total precipitation were obtained from two Environment 

http://www.cdc.noaa.gov/


Canada weather stations in study area and compared with NARR data for the period of 
1979-2004. The stations are located in Sioux Lookout (WMO ID 71842) and Red Lake (WMO 
ID 71854). 

Mean monthly observed and NARR data were compared for precipitation and 
temperature. NARR precipitation during summer and autumn months is lower than that 
observed at the weather stations, while NARR temperature is higher than observed 
temperature (Figure 3). 

J F M A M J J A S O N D
0

1

2

3

4
Sturgeon

P
re

c
ip

it
a
ti
o
n
 [
m

m
/d

a
y
]

 

 

J F M A M J J A S O N D
0

1

2

3

4
Troutlake

P
re

c
ip

it
a
ti
o
n
 [
m

m
/d

a
y
]

J F M A M J J A S O N D
-20

0

20

40
Sturgeon

T
e
m

p
e
ra

tu
re

 [
C

]

 

 

Observed

NARR

J F M A M J J A S O N D
-20

0

20

40
Troutlake

T
e
m

p
e
ra

tu
re

 [
C

]

 

Figure 3. Mean monthly precipitation and temperature from weather stations and NARR in each basin. 

HYDROLOGICAL MODELLING 

The SLURP model 

The SLURP (Semi-distributed Land Use-based Runoff Processes) model (Kite, 1995) is a semi-
distributed conceptual hydrological model that was initially developed for modelling meso-
scale Canadian watersheds as an alternative to the use of larger and more complicated 
hydrological models. The SLURP model simulates runoff based on daily precipitation, mean 
temperature, relative humidity, and bright sunshine hours, and physiographic data such as 
land cover and elevation.  

In SLURP, a basin is divided into a number of aggregated simulation areas (ASAs). An 
ASA contains certain types of land cover and the vertical water balance is calculated in each 
land cover in each ASA. The water is routed to the outlet of each ASA and then to the outlet 
of the basin. SLURP simulates the vertical water balance with four storage tanks in each land 
cover in each ASA: canopy store, snow store, fast store, and slow store (Figure 4). 
Precipitation is provided as input of water to ASAs, and fluxes such as interception, 
sublimation, evapotranspiration (ET), surface runoff, interflow, and base flow are calculated 
from the storage tanks.  



 

Figure 4 Vertical water balance in SLURP (adopted from Kite, 2000). 

The SLURP model was set up for each catchment with digital land cover and 
elevation data. The digital elevation data were obtained from the National Aeronautics and 
Space Administration (NASA) Shuttle Radar Topography Mission (SRTM), and land cover 
data sets were derived from the Advanced Very High Resolution Radiometer (AVHRR) and 
the Forest Resources Inventory (FRI) of Manitoba data.  

SLURP calibration and validation using NARR data 

Each model was calibrated using streamflow data measured at the Sturgeon River and the 
Troutlake River. For comparison purpose, hydrologic simulations with observed weather 
station data were also considered. Since all weather stations have missing data, the 
calibration and validation were conducted over the periods of most complete records for 
each basin. The Sturgeon-model was calibrated first for the period of 1992-1995 and 
validated over the period 2000-2004. The Troutlake-model was calibrated for the period 
1994-1997 and validated over 2000-2004. Since the NARR does not contain any missing data, 
the calibration and validation with NARR data can be conducted using any period. However, 
for fair comparison with observed data, the same validation periods were used (1989-1992 
for calibration and 2000-2004 for validation).  

The key parameters adjusted during the calibration were maximum infiltration rate 
(mm/d), retention constant for fast store (RCFS; in days), maximum capacity of fast store 
(MCFS; in mm), retention constant for slow store (RCSS; in days), maximum capacity of slow 
store (MCSS; in mm), rain/snow division temperature (in °C), canopy capacity (in mm), 
albedo, snowmelt rate (in mm/day), and evaporation-related parameters such as wilting 
point and field capacity.  

The calibration criteria include deviation of volume (Dv) of mean runoff and Nash-
Sutcliff Efficiency (E) of the daily runoff series. These statistics are explained by Legates and 
McCabe Jr. (1999) and measure volumetric error, goodness-of-fit, and daily average error 
between simulation and observation, respectively. Table 2 presents a summary of model 



performances of observed data and NARR data for the validation periods. As seen from the 
table, the performance statistics using NARR data are similar to the statistics obtained using 
observed data. In both cases, the average simulated runoff is close to the streamflow record 
and daily E-values are at an acceptable level. 

 

Table 2. Results from the SLURP model validation using observed and NARR data for each basin. 

 Sturgeon Troutlake 

 Observed NARR Observed NARR 

Observed mean runoff (m3/s) 46.13 20.68 

Simulated mean runoff (m3/s) 49.14 45.04 19.86 19.86 

Dv of mean runoff (%) 6.51 -2.38 -3.96 -3.99 

E of daily runoff series 0.77 0.64 0.65 0.61 

 

Observed and simulated monthly mean runoff for each basin is depicted in Figure 5. 
There appears to be a tendency that months with high runoff are underestimated and 
months with low runoff are overestimated.  

 

 

 

Figure 5. Observed and simulated monthly runoff series for each catchment. 

 



SIMULATION USING DOWNSCALED GCM DATA 

K-nearest neighbour (k-nn) downscaling 

Nearest neighbor resampling is a nonparametric statistical downscaling method that has the 
primary advantage of avoiding the complex parameterization process of other statistical 
downscaling models. Local weather data are produced by strategically resampling from a 
historical record based on similarity of the daily large-scale atmospheric patterns of the 
GCM. Reanalysis data from the National Centre for Environmental Prediction (NCEP) 
provides the historical record of large scale atmospheric data while NARR data will provide 
the historical local weather. The nearest neighbors, or statistically most similar days, to the 
simulation day in the historical record are determined. One of the nearest neighbors is 
selected by random sampling. Since the resampled day has similar large-scale weather 
conditions, which are correlated to local weather conditions, this day provides the desired 
local weather variables for the simulated atmospheric conditions. The process is repeated 
for each day. 

The comparison of the simulated atmospheric conditions to the historical record is 
made by using a feature vector, Dt, of the simulated day, 

 ]...[ 321 nt vvvvD    

Components of the feature vector, iv , are the n variables selected to describe the 

large-scale atmospheric circulation on day t. Since variables may have ranges that differ in 
orders of magnitudes, the variables are standardized by subtracting the mean and dividing 
by the standard deviation. To reduce the effects of seasonal variation the variables are 
standardized using the mean and standard deviation specific to the calendar day t. 
Smoothed estimates of daily mean and standard deviation were obtained through Fourier 
series analysis. To further reduce the effect of seasonal variation, the nearest neighbors are 
selected from within a moving window of width W centered on the calendar day of the 
simulated day. 

The feature vector of the simulated day is compared to the same feature vector of 
days in the historical record by calculating the Euclidean distance (Gangopahyay et al., 2005; 
Buishand and Brandsma, 2001; Rajagopalan and Lall, 1999), 
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where tu is the distance between the simulated feature vector and the feature vector of 

the historical day, Du, and iw  are weights applied to the individual feature vector variables 

tiv  and uiv . The value of the weights can be adjusted to optimize the performance of the 

resampling procedure. Days with the smallest distance are the nearest neighbors to the 
simulated day and exhibit the most similar atmospheric conditions. 

For a given simulation day, a number of nearest neighbors, k, are retained from the 
historical record. One of these days is randomly selected to provide the local climate 
variables for the simulated day. A probability weighting scheme is used to give more weight 
to the closer neighbors. A decreasing kernel density function (Lall and Sharma, 1996; 
Brandsma and Buishand 1998; Buishand and Brandsma, 2001; Wojcik and Buishand, 2003), 
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is used to assign probability weights to the nearest neighbors based on their ranked 
distances. In the above equation, jp  is the probability that day j is resampled. Once a 

nearest neighbor has been selected, the desired station data for the simulated day is 
provided by the station data recorded at the resampled day.  

The process of selecting a nearest neighbour is repeated for each GCM-simulated 
day.  

K-nn model set-up 

In the application presented here, GCM data were downscaled to produce time series data 
of mean daily temperature, relative humidity, solar radiation, and daily accumulated 
precipitation at five NARR grid points. Twenty-six years (1979-2004) of NARR data were 
available to use as historical data base of local weather. The NCEP Reanalysis 1 (Kalnay et 
al., 1996) supplied the historical large scale atmospheric data. The CCCma third generation 
coupled GCM, CGCM3.1/T47 was selected to provide the simulation data for a 20th century 
control run (20c3m, 1961-2000) and the IPCC SRES A2 and B1 emission scenarios. 

To adequately capture the large-scale circulation patterns, a large spatial area was 
selected over the region. The average surface temperature, 500mb temperature, 850mb 
temperature, 500mb geopotential height, and 850mb geopotential height variables were 
used as the large-scale variables. The grids for the NCEP and CCCma data sets have slightly 

different resolutions, 2.5 x 2.5 and 3.75 x 3.75, respectively. To make the data sets 
consistent, the NCEP data was linearly interpolated onto the CCCma grid points. The data 
covers the region in Figure 2 and consists of 42 data points. 

NCEP and the 20c3m experiment data were standardized using the mean and 
standard deviation from each data set to remove slight biases in the model for the current 
climate. The A2 and B1 scenario data was standardized using the means and standard 
deviations from the 20c3m data to preserve the biases created in the data due to changed 
atmospheric loadings. 

Since each large scale climate variable contained 42 data points, the total number of 

data to compare between NCEP and CCCma data was 210. Principal component analysis was 

used to reduce the number of variables in the feature vector by removing the redundancy of 

information (Gangopadhyay et al., 2005; Buishand and Brandsma, 2001; Young, 1994).  

To optimize the model, a cross validation method was set up in which the model was 

used to predict the historical station data. The NCEP data for one year was considered as 

simulation data and removed from the historical record. Local weather was then generated 

for this year of NCEP data by resampling NARR data from the historical record. This process 

was repeated for each of the 26 of years of historical data. The cross validation was 

repeated multiple times using optimization software to obtain the parameters, W (26 days), 

k (10), and wi, that provided the best reproduction of historical local weather. 



The cross validation showed the k-nn model was able to adequately reproduce the 
local weather variables for historical data. Figure 6 displays the results for one of the two 
grid points from downscaling the historical large scale climate variables to reproduce the 
historical local weather. Figure 6 (left) shows the estimated and observed accumulated 
precipitation over the winter months. Figure 6 (right) shows the estimated and observed 
daily temperature. A correlation of 0.96 was achieved for daily temperature. 

 

Figure 6. Estimated and observed winter precipitation accumulation (left) and winter daily temperature 

(right) for a NARR grid point in the Sturgeon River catchment. 

Downscaled CGCM3 20C3M precipitation and temperature data were compared to 

those of NARR (Figure 7). Downscaled mean precipitation are generally lower than NARR 

except for the months of July and August for both catchments. The precipitation in June 

appears significantly lower than other months. Downscaled temperature data were fairly 

close to NARR data over the whole year.  
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Figure 7. Mean monthly precipitation and temperature from NARR and downscaled CGCM3 data (20C3M) 
for historical period (1961-2000) in each catchment. 



Downscaling of GCM data 

With the k-nn model showing good performance in cross validation, the model was then 

used to downscale the IPCC SRES A2 and IPCC SRES B1 climate change scenarios. The k-nn 

model used the large scale climate variables provided by the GCM to resample days from 

the historical NARR data at two grid points located in the center of the Sturgeon River and 

the Troutlake River catchments, respectively. 

Table 4. Downscaled annual precipitation and temperature for 20C3M, A2, and B1. Changes from 20C3M are 

shown in parenthesis. 

 
Sturgeon Troutlake 

20C3M A2 B1 20C3M A2 B1 

Annual 
Precipitation (mm) 634 

687 
(+8.4%) 

622 
(-1.9%) 

576 
597 

(+3.6%) 
585 

(+1.6%) 

Average 

Temperature (C) 3.22 
5.67 

(+2.45C) 

5.63 

(+2.41C) 
2.77 

5.62 

(+2.85C) 

5.30 

(+2.53C) 

Both scenarios show increase of annual precipitation for Troutlake River, while 
annual precipitation in Sturgeon River increases for the A2 scenario but decreases for the B1 
scenario. As expected, both scenarios show increases in temperature. Average temperature 

in both catchment increased by aproximately 2.5C (see Table 4). As shown in Figure 8, both 
scenarios show higher increases of temperature in the winter than in the summer. 
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Figure 8. Mean monthly precipitation and temperature obtained from CGCM3 and downscaled by k-nn for 
20C3M, A2, and B1. 



Hydrological modelling using downscaled GCM data 

Downscaled CGCM3 data for the two scenarios and the control run were applied in the 
SLURP model for each catchment. As expected, simulated future runoffs reflects the 
projected change in future precipitation. In B1 scenario for Sturgeon River, as precipitation 
decreases runoff also decreases.  However, runoff increases as precipitation increases in A2 
scenario for Sturgeon River and both scenarios for Troutlake River. The increasing rate of 
runoff is proportional to the rate of precipitation. For instance, runoff increases the most 
(Table 5) in A2 scenarios for Sturgeon River as precipitation does (Table 4). 

Table 5. Mean annual runoff (in m
3
/s) simulated by SLURP for 20C3M, A2, and B1. Changes from 20C3M are 

shown in parenthesis. 

 20C3M A2 B1 

Sturgeon 31.2 34.7 (+11.2%) 28.9 (-7.4%) 

Troutlake 14.9 16.1 (+8.1%) 15.3 (+2.7%) 

  

The temperature increases in the winter advance the spring snowmelt runoff by 
almost a month. The increased summer precipitation in the A2 scenario results in increased 
runoff in the summer and in the early autumn. On the other hand, the B2 scenario shows 
decrease in summer runoff for the Sturgeon River and no change for the Troutlake River 
(Figure 9). 
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Figure 9. Mean daily runoff simulated by SLURP with the downscaled CGCM3 output for 20C3M, A2, and B1. 



DISCUSSION AND CONCLUSIONS 
We utilized the NARR data for hydrological modelling and statistical downscaling of GCM 
data to assess the hydrological changes in the Winnipeg River basin under climate change. 
Future climate scenarios were generated by statistically downscaling GCM data under the 
A2 and B1 emission scenarios with the k-nn method for which the NARR data were used as 
historical records.  

Since the k-nn method is a nonparametric statistical downscaling method, it can be 
relatively easily implemented without complex parameterization processes required by 
parametric models such as SDSM (Wilby, 2002) and LARS-WG (Semenov and Barrow, 1997). 
However, the method produces the local weather by resampling using historical records, 
which means that extreme values are conditioned by the historical records. Although the k-
nn method underestimated precipitation, generated local weather data were quite 
acceptable for hydrologic modelling in overall.   

In this study, we obtained reliable results for the current hydrological and climatic 
conditions by using the NARR data for hydrological modelling and the k-nn statistical 
downscaling. Since NARR contains almost every atmospheric and surface variable required 
for climate change impact studies, the results are especially promising remote regions 
where climate data are scarce. The results from hydrological simulations are comparable to 
those from previous studies (e.g. Woo and Thorne, 2006; Kim et al., 2007) and statistical 
downscaling with the NARR data is an unprecedented attempt.  

Hydrological simulations with future climate scenarios demonstrate that March and 
April runoff is likely to increase substantially under both A2 and B1 scenarios and summer 
and autumn runoff is likely to increase under the A2 scenario while decreasing under the B1 
scenario. It should be noted that the average magnitude of spring peak flows does not 
change much in any case. Therefore, analyses on the changes in the variability of spring 
peak flows and the magnitudes of extreme hydrological events are anticipated in a 
subsequent study.  
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