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ABSTRACT --- Experience suggests that any single-objective search, no matter how carefully 
chosen, is not able to identify a solution capable of satisfactorily model a phenomenom of interest. 
Use of a multiobjective approach can yet be justified by the nature of real world problems, which in 
general involve multiobjectives, most of the time conflicting objectives. An approach very often 
used in multi-criteria optimization is the concept of Pareto dominance, which allows us to compare 
different solutions by using different objectives and to explore different characteristics of the 
observed data. This paper employs evolutionary algorithms inspired on honey-bee mating for 
single- (Honey-Bee Mating Optimization - HBMO) and multiobjective (Multiobjective Honey-Bee 
Mating Optimization - MOHBMO) problems. Both are applied to minimization of test functions 
and calibration of watershed models. The single-objective version is the one introduced by Haddad 
et al. (2006), while its multiobjective version is proposed by the present work. As reference of their 
performance, other well known algorithms were used. The daily hydrological model HYMOD was 
calibrated for 21 watersheds in Ceará State by using the algorithms aforementioned.  
Keywords: calibration, multiobjective, Hydrologic models. 
 

1 - INTRODUCTION 
 
In Engineering, and more specifically in water resources, the need of representation of complexes 
natural phenomena through models is of crucial importance for water resources planning and 
management. Through the use of these models, it is possible to understand the natural process and 
to evaluate the system response to different scenarios, providing support to the decision making 
process. 

 
Among those models, two classes are of great importance to water resources planning and 
management: the rainfall-runoff models and the reservoir system operation models. The latter class 
of models makes use of either systematic records of reservoir’s inflows or simulated series obtained 
by the first class of models, the hydrologic models, which are simple mathematical representations 
of the natural processes that occur in a watershed. 

 
With respect to rainfall-runoff models, in order to represent satisfactorily the natural process, their 
parameters should be determined appropriately. In most cases, these parameters cannot be directly 
determined due to either the impossibility to estimate them in the field or their abstract nature. The 
indirect determination of the parameters can be made through a calibration study of the model under 
analysis as long as one has a common period of series that represents both the input and output of 
this model.  

 
Calibration can be carried out either manually or automatically. The manual method consists of a 
series of trial-error attempts, in which the parameters are chosen based on the hydrologist 
experience and knowledge of the region of study. After this choice, the hydrologic model is run and 
then a comparison is made between the observed and the simulated hydrographs, subjectively, 
looking after the set of parameters that produces the best result. Solutions of such nature are 
generally very demanding in terms of work and time, besides requiring the full knowledge of those 
models, which sometimes are extremely complexes. 
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The automatic calibration is based upon the use of optimization algorithms that perform a search for 
the optimal solution with respect to one or more objectives. Several research studies were done in 
the last decades in this scope, and experience has shown that optimal search based on only one 
objective, regardless of how carefully it can be made, are not able to determine a solution that 
models adequately the phenomenom under study. Another factor that favors a multiobjective 
optimization is that real-world problems frequently require the analysis of conflicting 
multiobjectives. For such cases, it is possible to use the Pareto Front concept, which makes possible 
the comparison of solutions with multiple objectives. 

 
Among the algorithms used nowadays, a group in particular has been topic of several research 
studies due mainly to its widespread use in several areas of science, commerce and engineer, and, 
also, due to the easiness of their implementation: the evolutionary algorithms. A great advantage of 
this class of algorithms relative to other approaches is the fact they work with a set of solutions 
simultaneously, which allows a global perspective of the problem, a greater diversity in the search, 
and more reliable solutions. Moreover, evolutionary algorithms do not depend on specific 
characteristics of the objective function to properly work, such as, concavity, convexity and 
continuity. 

 
2 – LITERATURE REVIEW 
 
The identification of the optimum of uni-modal functions is a problem for which several strategies 
have been explored in the literature. However, in practice, uni-modal function is barely the case, 
since most of real-world problems have several local solutions, while only one is the global 
optimum. This class of problems involves an additional challenge, once one is interested in 
identifying a set of parameters of a hydrologic model that better represents the behavior of 
streamflow generation process in a watershed through time (Duan, 2002). Moreover, the involved 
subjectivity and the required time for manually fit a hydrologic model on a trial-error basis 
motivated the intense research on automatic calibration of hydrologic models (Vrugt et al., 2003). 

 
However, most studies focused on the uni-objective automatic hydrologic model calibration (Duan 
et al., 1992, 1993, 1994), while the multiobjective approach has been explored only in the last 
decade. Within a multiobjective context, a great variety of evolutionary algorithms has been 
developed based on the concurrent evolution of multiple non-dominate solutions at each iteration of 
these algorithms (Coello et al., 2004). 

 
Different multiobjective approaches have been employed in the implementation of evolutionary 
algorithms, such as: objective weighting, lexicographic ordination, use of sub-populations (each one 
being a uni-objective optimizer), Pareto concept and possible combinations of the previous 
alternatives. The implementation of multiobjective approaches in evolutionary algorithms has 
followed this taxonomy, as shown by: 1. Objective weighting (Das and Dennis, 1997; Jin et al., 
2001; Baumgartner et al., 2004); 2. Lexicographic ordination (Hu et al., 2003); 3. Use of sub-
populations (Schaffer, 1985); 4. Pareto Concept (Knowles and Corne 1999, 2000; Nascimento et 
al., 2007); and, 5. Possible combinations of the previous alternatives (Xiao-hua et al., 2005). 

 
Within a hydrologic modeling context, two developments can be highlighted: the Multiobjective 
Complex Evolution (MOCOM-UA; Yapo et al., 1998) and the Multiobjective Shuffled Complex 
Evolution Metropolis (MOSCEM-UA; Vrugt et al., 2003). The MOCOM-UA resolves the 
multiobjective calibration problem by the application of the Pareto concept to the global Shuffled 
Complex Evolution algorithm (SCE-UA; Duan et al., 1992, 1993). MOSCEM was developed in 
order to better identify the Pareto Front, specially in its extremes, as well as to resolve the 
MOCOM-UA deficiency regarding the premature convergence in the presence of a large number of 
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parameters and objectives highly correlated (Gupta et al., 1998; Yapo et al., 1998; Bastidas et al., 
1999; Boyle et al., 2000, 2001; Wagener et al., 2001). 

 
This study focus on the application of evolutionary algorithms based upon the mating flights of bees 
in its uni- (HBMO) and multiobjective (MOHBMO) versions for calibration of hydrologic models. 
The uni-objective version is that proposed by Haddad et al. (2006), while its multiobjective version 
is proposed by the present study. As a reference, other evolutionary algorithms are used for the uni-
objective case, the PSO (Particle Swarm Optimization) and the SCEM (Shuffled Complex 
Evolution Metropolis), while for the multiobjective case the proposed algorithm will be compared 
with the multiobjective versions of the previous algorithms, the MOPSO (Multiobjective Particle 
Swarm Optimization) and the MOSCEM (Multiobjective Shuffled Complex Evolution Metropolis). 
The PSO and MOPSO algorithms are based on the social behavior of individuals, while the SCEM 
and the MOSCEM are based upon Markov Chain Monte Carlo methods (MCMC). The PSO and 
MOPSO algorithms employed here are described in Nascimento et al. (2007), while SCEM and 
MOSCEM are described in Duan et al. (1992, 1993) and Vrugt et al. (2003), respectively. 

 
3 – METODOLOGY 
3.1 – Evolutionary Algorithms 
 
Evolutionary algorithms include search methods that have their insight on natural processes, such 
as: behavior of social groups, animal reproduction, among others. These algorithms are based on the 
"survival of the fittest”, meaning that the best solutions will prevail over the others. These 
algorithms have characteristics that make them more robust than other approaches to search optimal 
solutions, among which can be highlighted: 

 The ability to work simultaneously with a population of solutions, which introduces a global 
perspective and a greater diversity in the search. Such characteristic promotes a great capacity to 
find a global optimal in problems that have several  local optimal solutions; 

 Unlike other algorithms based on differential calculus or other specific procedure, evolutionary 
algorithms work with any objective function and require no specific characteristic, such as 
continuity, concavity or convexity; 

 No previous knowledge of the search space is needed. The search space can be 
multidimensional, constrained or not, either linear or not. 

 
3.2 – Multiobjective approach using Pareto Dominance Criterion 
 
From a multiobjective context, it is necessary the introduction of a new concept to replace the 
simple comparison between uni-objective different solutions, i.e., the Pareto dominance concept. 
This multiobjective approach is described below and the consequent problems due to the use of the 
Pareto dominance concept are dealt afterwards. 

 
Let a multiobjective minimization problem given by: 

  
[ ])(...)()()(min 21 xfxfxfxf M=  (1)

 
where )(xfi  is i-th of M objective functions and x  is a feasible solution. 
 
Looking at equation (1), two distinct solutions (u  and v ) can be related in the following manner 
(Alvarez et al., 2005): 

 If Mivfuf ii ,...,1|)()( =∀≤  and )()( vfuf ii <  for some i , then v  is strictly dominated by u , 
represented by vu p ; 

 Or, if ivfuf ii ∀≤ |)()( , v  is said to be weakly dominated by u , represented by vup . 
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If  u  is not dominated by v , and v  is not dominated by u , u  and v  are said to be non-dominated 
solutions. It is clear, then, that multiobjective problems have more than one optimal solution, and 
this set of solutions is called Optimal Pareto Front or True Pareto Front composed of non-
dominated solutions by any other solutions. 

 
Figure 1(a) shows in the parametric space (θ) the location of the minimum of two objective 
functions represented by A and B, the line that connects these minimum and that are part of the 
Pareto Front, and the γ point, which represents a possible solution of the optimal front. Figure 1(b) 
shows the same elements in the objective function space. It should be noticed that the curve that 
connects A to B is tangent to the function contour lines in the parameter space. 

 

 
   (a) Parameter Space          (b) Objective Function Space 

Figure 1 – Illustration of the Pareto optimal solution concept for a minimization problem with two 
objectives (F1, F2) in a search space (∆δ) bi-parametric (θ1, θ2): a. parametric space; b. functions 
space (Vrugt et al., 2003). 
 
3.3 – Honey bee mating-based Optimization (HBMO and MOHBMO) 
 
The uni-objective version of the algorithm (HBMO) is the one proposed by Haddad et al. (2006), in 
which the honey bee mating has served as inspiration. The relationship between the natural process 
and the algorithm is established as the algorithm is described mathematically in the sequence. 

 
3.3.1 HBMO Algorithm (Honey-bees Mating Optimization) 
 
The algorithm starts with an initial population (hive), composed by a set of solutions randomly 
sampled from a Uniform Distribution. A fitness value is assigned to each solution of the initial 
population, equals to the selected objective function. The best solution (queen) is then selected 
based on the fitness value, the smallest fitness value since it is a minimization problem. All other 
solutions are discarded and a new iteration is initiated. If the problem at hand is a maximization 
problem, then the following equation should be used:  

 
))(min()(max xfxf −=  (2)

 
At the beginning of a new iteration, random solutions (drones, D) with certain degree of 
dependence with the best solution (queen, Q) are generated. Such dependence is a linear or a 
quadratic function of the number of iterations (see equations 3 and 4), increasing with the number 
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of iterations (maturity of the hive). At the last iteration there is a large dependence among the 
drones and the queen, which promotes the convergence of the search. In order to guarantee the 
diversity of the solutions, a minimum randomness factor for the generation of the drone is 
introduced as an algorithm parameter.  

 
[ ] [ ]nMFinMFdnMFiQD /))1((/)1( −−×+−×=  (3)
[ ] [ ]2222 /)/(1 nMFdnMFQD δδ ×+−×=  (4)

 
where nMF is the number of iteration, i is the actual iteration, d is a random solution in the search 
space. The set of random solutions {d} is centered at the best solution (queen), from which each 
random solution d is generated. The parameter δ  is given by the following expression: 
 

)1( −−= inMFδ  (5)
 

At each iteration, a selective test (mating flight) is performed in order to determine probabilistically 
whether or not the best solution (queen) will receive information (mating) from the randomly 
selected solutions (drones).  This is done by applying an annealing function, also known as 
Boltzman function, as suggested by Abbas (2001): 

 
( ))(/)(exp),( tSpfDQp ∆−=  (6)

 
where ),( DQp  is the probability that the best solution Q receives information from the selected 
random solution D (crossover between the drone D and the queen Q), )( f∆  is the absolute 
difference of the fitness values of solutions Q and D, and )(tSp  is the temperature (speed of the 
queen) of the annealing function at time t (during flight). Looking at the annealing function, it is 
evident that the probability is larger when either the temperature (speed of the queen) is high or the 
differences in fitness are small (the fitness of the drones are close to the fitness of the queen).  
 
The algorithm allows information exchange (mating) between the current solutions (drones and 
queen) with probability ),( DQp . In case of information exchange (mating), the information of the 
solution (genetic information of the drone) is selected and stored in a repository (queen’s 
spermatheca), and the temperature of annealing (speed of the queen) decreases as follows: 

 
)()()1( tSpttSp ×=+ α  (7)

and 
[ ] MtmMt /)()( −=α  (8)

 
where )(tSp  is the temperature (speed of the queen) at time t, )(tα  is a value between 0 and 1, M  
is the size of the repository (queen’s spermatheca) and )(tm  is the number of randomly selected  
solutions (drones) for the crossover. The  number of information exchange attempts (queen’s 
energy) decreases as follows: 

 
γ−=+ )()1( tEtE  (9)

 
where )(tE  is the number of attempts at time t and γ  its decay at each time interval. For this study, 
γ  is equals to one.  
 
The best solution (queen) can receive information (mating) as long as both the number of attempts 
(its energy) is not close to zero and its repository (spermatheca) is not full. From equation (9), it is 
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noticed that the decay value γ  will determine how many tests (transitions in the search space, for 
which exists a probability of the queen meeting a drone) the best solution (queen) can perform at 
each selection of random solutions (mating flight). Other limiting factors are the temperature of the 
annealing function (speed of the queen), which should be greater than zero, and the number of 
random solutions (drones) available for testing, since each random solution only provides 
information (mating) once and then is discarded (death of the drone). 

 
The generation of new solutions (offspring) occurs after the information exchange by crossover 
between the information stored in the repository (genes of drones in the spermatheca) and the 
information of the best solution (genes of the queen). The choice of which information (genetic 
material in the spermatheca) will be used is randomly determined and can be reused. This 
generation process is carried out using several crossover operators according to their performance, 
here evaluated by the percentage of their contribution to the generation of new solutions. It was 
used two crossover operators as described in section 3.3.3: the Arithmetic Crossover the Blend 
Crossover. 

 
Once new solutions (new offspring) are generated, an attempt is made to improve both the new 
solutions and the best solution by use of a mutation procedure, known as Creep mutation operator 
(See section 3.3.3). The mutation is randomly applied to a pre-specified percentage of the new 
solutions (new offspring). Also, there is a probability that mutation is applied to the best solution 
(queen), set herein to 5%.    

 
After mutation, the population is then evaluated based on the objective function. If the best 
generated solution is better than the best current solution (queen), the best solution is updated, 
otherwise, the best solution continues the same. At each iteration, all generated solutions are 
discarded and only the best solution is kept. 

 
The process described previously is repeated until a stop criterion is met, such as the maximum 
number of iterations. As an attempt to perform a more detailed search, Haddad et al. (2006) 
suggests the use of several queens, selected based on their fitness values. In such case, the process 
described earlier is applied for each queen, mixing all offspring afterwards. The best solutions are 
then selected from the sets formed by both queens and their offspring. This approach, used in this 
study, results in a refinement over the original approach based on only one queen. 

 
3.3.2 Multiobjective Honey-bees Mating Optimization 
 
In order to deal with multiobjective problems, some modifications in the HBMO algorithm were 
made. After the generation of the initial population (hive) and respective evaluation of objective 
functions, the selection of the “best solutions” (queens) must be made, but no longer based only on 
the comparison of single objective function values. Under a multiobjective approach, a new 
concept, such as the Pareto dominance concept, is needed for dealing with different solutions, 
classifying them as dominated or non-dominated solutions. The “best solutions” (queens) selected 
from the initial population are the non-dominated solutions. 

 
Once identified the non-dominated solutions (queens), the iterative process is initiated in the same 
way as in the uni-objective case (mating flights, generation of new queens, improvement of the 
queens and of the new generation and selection of new queens). Each non-dominated solution 
(queen) will generate a certain number of solutions (offspring) after each iteration. The criteria for 
generation and improvement of the solutions (offspring) and of the best solution (queen) are the 
same employed in the uni-objective version. 
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With the new generated solutions (new offspring) and the non-dominated solutions from the 
previous iteration, the new set of non-dominated solutions is identified, which forms the Pareto 
Front. These new solutions will generate the new solutions in the next iteration. The process is 
repeated until the stop criterion is satisfied. 

 
Frequently, the number of solutions that belong to the Pareto Front increases as the algorithm 
evolves, thus each non-dominated solution is a potential generator (queen) of new solutions in the 
next iteration of the algorithm. This would make the algorithm slower and more inefficient as the 
number of iteration increases, since each solution would generate a number of new solutions (new 
offspring and drones), escaping the user control. 

 
In order to increase the algorithm efficiency, it was used a clustering method (Seber, 1984; Spath, 
1985) to select the non-dominated solutions (queens) among the front solutions. The clustering 
technique used here not only promoted a better distribution of the solutions along the front but also 
improved the performance of the algorithm. 

 
3.3.3 Crossover and Mutation Operators 
 
The crossover operators employed here are the Blend Crossover and the Arithmetic Crossover 
operators. The Blend Crossover performs a linear combination between two solutions as indicated 
by the following expression (Lacerda and Carvalho, 1999): 

 
)( 121 pppc −×+= β  (10)

 
where c is the generated offspring, 1p  and 2p  are the parent solutions, and β  represents the 
feasible space for offspring generation with )1,(~ εεβ +−U , where a previously chosen ε  allows 
the generation to occur beyond the interval defined by 1p  and 2p . 

 
The Arithmetic Crossover does a linear combination between two solutions according to the 
following expressions (Lacerda and Carvalho, 1999): 

 

212

211

)1(
)1(

ppc
ppc

×+×−=
×−+×=

ββ
ββ

 (11)

 
where )1,0(~ Uβ . 
 
The mutation operator corresponds to the Creep Mutation operator, which performs a small 
perturbation in one decision variable. This perturbation is carried out according to the following 
expression: 

 
i
n

i
n cc ×= β  (12)

 
where i

nc  represents the decision variable i  of the solution n  and )05.1,95.0(~ Uβ  is the mutation 
factor 
 
4 – HYDROLOGIC MODEL 

 
This paper employs the daily rainfall-runoff model HYMOD (Moore, 1985). The used version is a 
relatively simple model, which uses the probability distribution concept to describe the spatial 
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variation of runoff production process parameters. This allows the integration of the flow response 
over the whole watershed represented by algebraic expressions.   

 
The idea underneath the model is that the watershed can be viewed as a set of points without 
interaction among them, while each one has a water storage capacity that, when exceeded, generates 
runoff. Figure 2 illustrates this representation. 
 

 
Figure 2 – Watershed representation in the HYMOD model (P: Precipitation; E: Evaporation;        

O: Outflow; WS: Water Storage; maxC  is the largest water storage capacity within the watershed). 
 

The distribution function of the different water storage capacities is defined as: 
 

( )BCCCF max/11)( −−=  (13)
 
where F represents the cumulative probability of a certain water storage capacity (C) if a random 
point is selected; maxC  is the largest water storage capacity within the watershed and B is the degree 
of variability in the storage capacity. Figure 3 shows the schematic representation of the HYMOD 
model. After a rainfall event, the water can infiltrate up to the soil reaches its water storage 
capacity, after what runoff will be generated. 

 

 
Figure 3 – Schematic representation of the hydrologic model HYMOD. 

 
The fraction that exceeds maxC does not infiltrate and passes through three linear quick flow tanks at 
a constant flow rate RQ. For those points where the water storage is less than maxC , the remaining 
precipitation which exceeds the water storage is directed to either quick flow tanks or the slow flow 
tank depending on a constant α. The total outflow of the watershed is obtained by summing the 
outputs of the quick flow tanks and the slow flow tank. 
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Finally, the evaporation is taken from the water storage in the watershed. If the available water in 
storage is greater than the potential evaporation, the real evaporation is equal to the potential 
evaporation, otherwise all available water evaporates. 

 
This model has five parameters: 1. Largest storage capacity within the watershed ( maxC ); 2. The 
degree of spatial variability in the water storage capacities (B); 3. Factor that divides the amount 
that exceeds the water storage capacity of points with a capacity lower than maxC between the quick 
flow tanks and the slow flow tank (α); 4. Residence time for the quick flow tanks (RQ); 5. 
Residence time for the slow flow tank (RS). 

 
5 – RESULTS AND DISCUSSION 
5.1 – Test Functions 
 
The reference algorithms (PSO, MOPSO, SCEM, MOSCEM), the single-objective algorithm 
HBMO and its multiobjective version proposed here MOHBMO were tested with mathematical 
functions which represent a challenge for any optimization algorithm, named here simply test 
functions (Deb, 1999).  

 
Five test functions were used to evaluate the optimization algorithms, noted here as f1(x1,x2), 
f2(x1,x2), ..., f5(x1,x2).The used functions are described in Table 1, but some of them are used only 
for the multiobjective case (for example, Function 1). Five combinations of functions in Table 1 
were considered for the composition of the multiobjective problems (MO): (a) MO1: f1 and f2; (b) 
MO2: f1 and f3; (c) MO3: f1 and f4; (d) MO4: f1 and f5; and (e) MO5: f3 and f5.  
 
Table 1 – Test functions used in the uni- and multiobjective optimization. 
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A sensitivity analysis of the parameters of the aforementioned algorithms was performed in order to 
determine their values to be later used in the calibration of the hydrologic model. This sensitivity 
analysis is not presented here, but can be found in Barros (2007). 

 
5.1.1 Uni-objective Minimization 
 
In order to compare the performance between HBMO and PSO for minimization, both algorithms 
were used to minimize several test functions. The goals were to access both the ability of each 
algorithm to identify the optimum and their speed of convergence in terms of number of evaluation 
needed to reach the optimum. The initial condition was kept the same for both algorithms to 
guarantee a fair comparison. 

 
For the uni-objective minimization of test functions, the following parameters of the HBMO 
algorithm were used: a. Initial population size = 100; b. Number of mating flights = 50; c. Number 
of queens = 20; d. Number of drones = 1; e. Minimum randomness factor of the drone = 10%; and, 
f. Number of offspring per queen = 4. For the PSO algorithm, the following parameters were used: 
a. Size of population = 100; b. Number of iterations = 50; c. Maximum speed of the particle = 1 
(function 4) and 0.1 (functions 2, 3 and 5); and, d. c1 = c2 = 1 and w varying from 0.95 to 0.4 until 
the algorithm reaches 70% of the maximum number of iterations, keeping the smallest value in the 
following iterations. 

 
Once defined the algorithms’ parameters, five applications were then made starting from the same 
initial conditions and parameter values for both algorithms as mentioned before. For each function, 
convergence was illustrated using graphics that show the value of the objective function at each 
iteration: 

 Function 2: Both algorithms have similar convergence with function values almost equal at the 
end of 700 iterations; 

 Function 3: PSO converged slower than HBMO. While HBMO rapidly reached the global 
optimum by 1500th evaluation, PSO did not identify the global minimum;   

 Function 4: For this problem, it was noted that PSO was more robust than HBMO, since PSO 
identified the global optimum for all cases but one, while HBMO identified the global optimum 
for two cases only; 

  Function 5: Although HBMO converged faster than PSO, both algorithms identified easily the 
global optimum. 

 
5.1.2 Multiobjective Optimization 
 
The comparative evaluation of the algorithms in multiobjective problems employs multiobjective 
versions of the algorithms tested in the last section: the algorithms MOHBMO, MOPSO and 
MOSCEM, the multiobjective versions of HBMO, PSO and SCEM, respectively. The non 
utilization of the algorithm SCEM is justified by the fact this algorithm does not work with the 
concept of objective function. 

 
For the minimization of the multiobjective problems, the following parameters for MOHBMO 
algorithm were used: a. Initial population size = 100; b. Number of mating flights = 100; c. Number 
of queens = 20; d. Number of drones = 1; e. Minimum randomness factor of the drone = 1%; and, f. 
Number of offspring per queen = 4. The other parameters were used as described previously in 
section 5.1.1. For MOPSO algorithm, it was employed the following parameters a. Size of 
population = 100; b. Number of iterations = 100; c. Maximum speed of the particle = 0.5. The other 
MOPSO parameters were those recommended by Nascimento et al. (2007). For MOSCEM, it was 
used the following parameters: a. Size of population = 100; b. Number of complexes = 2; c. 
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Number of Objective Function evaluations = 10,000. Figure 4 presents the true Pareto Fronts and 
those identified by the three algorithms MOHBMO, MOPSO and MOSCEM for the multiobjective 
problems 2–5. 

 

 
(a) MO 2 (b) MO 3 

 
(c) MO 4 

 
(d) MO 5 

Figure 4 – True Pareto Fronts and those identified by the algorithms MOHBMO, MOPSO and 
MOSCEM for the multiobjective problems 2–5. 

 
MOHBMO and MOSCEM algorithms experienced problems in identifying the Pareto Front in the 
presence of singularities (MO2), while MOPSO was able to fill in the front adequately. With respect 
to the presence of bias in the objective function (MO3), MOHBMO algorithm had the best 
performance and was the only algorithm to properly fill the Pareto Front. For the Multiobjective 
problem 4 (MO4), all three algorithms had similar performance, while for the Multiobjective 
problem 5 (MO5) MOHBMO was able to better identify and adequately fill the Pareto Front relative 
to the other two algorithms.  

 
5.2 – Hydrologic Models Calibration 
 
This section evaluates the performance of the HBMO and MOHBMO algorithms relative to other 
relatively well known evolutionary algorithms (PSO, MOPSO, MOSCEM). The MOHBMO, a 
multiobjective version of the HBMO algorithm, was proposed in this paper for the calibration the 
hydrologic model HYMOD. The difficulty in calibrating daily hydrologic models for semi-arid 
regions is due mainly to the poor quality of the available hydrologic data as well as the inexistence 
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of information regarding small reservoirs, which can affect tremendously in the streamflow 
generation process, in particular for low-flow periods. Another difficulty is the predominant 
convective nature of the precipitation regime over the rainy season, which makes even more 
necessary the existence of a dense monitoring network along with high quality information. This is 
very difficult to guarantee on a daily basis.  For the calibration study, the longest record was used, 
leaving out part of the record for verification. The use of a long record for calibration makes 
difficult the identification of reliable parameters  (Yapo et al., 1996), but the goal of the study was 
the evaluation of the performance of the optimization algorithms. The Nash-Suttcliffe coefficient 
was employed as fitting criteria applied to daily streamflow series (of1), characteristic points of the 
flow-duration curve (of2), peak flows (of3) and monthly volume series (of4):  
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Figure 5 presents the result for the calibration of HYMOD applied to the stream gage station 
34750000, selected from those stations that achieved better results among the 21 stations employed. 
The calibration was carried out for the 32 years of the station data, but only a period is shown here.  
This Figure shows the sets of optimal parameters (Figure 5a) and the Pareto Fronts (Figure 5b) 
identified by the multiobjective algorithms using objective functions 1 and 2. Generally,  
MOHBMO and MOSCEM were able to identify the Pareto Front with a good density of points and 
coverage of its limits. The MOPSO experienced difficulty, as already noticed with the test 
functions, to identify points close to Pareto Front limits with adequate density. For some stations, 
the Pareto Front identified by the MOPSO was completely or partially dominated by the other 
Pareto Fronts identified by MOHMO and MOSCEM. 
 

(a) (b) 
Figure 5 – Optimum solutions identified by the algorithms MOHBMO, MOSCEM and MOPSO 
using OFs 1 and 2 in the calibration of the model HYMOD for the stream gage station 34750000: 
(a) Set of optimal parameters; (b)  Identified Pareto Fronts. 
 
Figure 6 presents the observed hydrograph and those associated with the optimal solution set of the 
Pareto Front identified by the MOHBMO algorithm, but in this case, differently from Figure 5, the 
objectives are of1 and of3. The bold black line represents a “trade-off” solution between the two 
objectives. Should be noticed that the algorithms MOHBMO and MOSCEM did not experienced 
any difficulty in determining the Pareto Front for the case of high correlated objectives and 
fractioned fronts. For these two algorithms the Pareto Front filling was appropriate and extended to 
its range limits. 
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Figure 6 – Observed hydrograph and optimal hydrographs associated to Pareto Front points for the 
objective functions OF1 and OF3. Dotted line represents the observed hydrograph while the 
continuous line represents the solution correspondent to the point of the Pareto Front indicated by 
the arrow (Hydrographs associated to other points in the Pareto Front are represented by grey lines). 
The identified Pareto Front is presented below the hydrographs. 
 
5 – CONCLUSION 
 
The optimization algorithms used in this paper were tested with mathematical functions for which 
the optima are known (optimum solution for the single-objective case and the Pareto Fronts for the 
multiobjective case), and afterwards used in the calibration of the hydrologic model HYMOD. For 
the test functions, the algorithms PSO and MOPSO had better performance when compared to the 
other algorithms in the presence of singularities of the objective function. In general, HBMO and 
MOHBMO were superior to PSO and MOPSO/MOSCEM respectively, in terms of appropriate 
filling of the Pareto Front and identification of the elements of the Pareto Front in their limits. The 
PSO and MOPSO performed worse when bias was introduced in the objective function.  

 
Several problems identified in section 5.2 difficult the calibration process. For posterior analysis, 
special attention should be given to the definition of the calibration period. The calibration period is 
not necessarily the longest, but that with better quality information regarding the hydrological 
processes captured by the HYMOD model. 

 
The efficiency of the proposed algorithm MOHBMO in identifying the Pareto Front during the 
calibration of the HYMOD model was compared to those fronts identified by MOPSO and 
MOSCEM. In general, MOHBMO and MOSCEM presented a better performance relative to 
MOPSO, but MOSCEM, besides the higher computing time when compared to the other two 
algorithms, offers additional information regarding the parametric uncertainty of the model. The 
choice of the objective function within a multiobjective optimization framework should be carefully 
made, since this choice can dramatically affect the dynamics of the hydrologic simulation output. It 
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is necessary take more advantage from the multiobjective optimization by exploring different 
characteristics of the observed hydrographs to be preserved. 
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