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Abstract 
In this study, we investigated the potential of FORMOSAT-2 and ENVISAT/ASAR for the 
monitoring of irrigated wheat crops over a 10 km² semi-arid area located in the 
Tensift/Marrakech plain. These satellite are designed to provide both high spatial resolution 
(10 m) and frequent (daily) time of revisit. The FORMOSAT-2 Taiwanese satellite 
(http://www.nspo.org.tw) can provide 8m resolution images every day in 4 bands ranging 
from blue to near-infrared spectral domains. The Advanced Synthetic Aperture Radar 
(ASAR), onboard ENVISAT mission (http://envisat.esa.int/) operates in the C-band a spatial 
resolution of about 30m in the Alternating Polarisation mode. The orbital cycle of ASAR is 
35 days, but the combination of acquisitions with different incidence and path configurations 
allows a revisit time of a few days. 

The experiment was set up during the 2005-2006 wheat agricultural season on an irrigated 
area located at 40 km East of Marrakech. This semi-arid area was intensively monitored as 
part of the SudMed program (http://www.irrimed.org/irri&sudmed.htm). The experimental 
data set includes information on agricultural practices, vegetation biophysical variables (green 
leaf area index and dry aerial mass of canopies). FORMOSAT-2 images were programmed 
with a nominal time step of 4 days and about 25 cloud-free images were acquired during the 
2005-2006 agricultural season (November to May). 15 ASAR Alternating Polarisation images 
were available at the same period, all. The images were all acquired in ascending pass at high 
incidence angles (35° to 45°) in dual polarisations (VV and HH).    

We first used the time series of FORMOSAT-2 images acquired during the 2005/2006 
agricultural season to characterise the vegetation dynamics. Green leaf area index was 
inverted from Vegetation Indices derived from FORMOSAT-2 images  with a 25% accuracy. 
In a second step, this information was incorporated into a canopy functioning/water balance 
model to provide spatial estimates of green leaf area index, dry aerial biomass and top-soil 
moisture. These outputs were evaluated at the field scale using data collected at ground on 8 
wheat fields. The model accurately simulates the time courses of leaf area index and dry aerial 
mass during the vegetative phase (20% error). Finally, we analysed the spatio-temporal 
variations of ASAR backscaterring coefficients on the basis of these simulations. In the 
conditions that prevail in this study, the sensitivity of ASAR data to the vegetation density 
appears very low and restricted to very specific soil/plant conditions (wet soil/tillering phase). 
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I. Introduction 
 

Half of the world food production originates from irrigated and drained soils on about 20% of 
cultivated lands (FAO/IPTRID 1999, Bastiaanssen et al. 2007). However, serious water 
shortages occur in arid and semi-arid areas as existing resources reach full exploitation. The 
design of tools providing with regional estimates of water balance and crop yield is necessary 
to ensure a sustainable development of these areas.  

Crop simulation models are designed to describe the effect of climate, soil and agricultural 
practices on crop growth and production. Although models performances have continuously 
made progresses over the past few years, regional applications for the monitoring of water and 
vegetation resources are limited (Boote et al. 1996, Moulin et al. 1998, Faivre et al. 2004, 
Bastiaanssen et al. 2007). Indeed, shortage of geolocated data prevents the use of crop models 
over large areas. In particular, there are generally a large number of model parameters 
compared to the amount of observation available for their identification over each agricultural 
unit (field). Furthermore, it is difficult to cope with the lack of adequate and sufficient input 
data to run the model at a regional scale. This is particularly true for the information about 
technical practices such sowing, irrigation and fertilisation schedules, which know large space 
time variations. Thus, prior (imperfect) information on parameters and inputs is required 
resulting in simulation errors and reduction of the predictive capacity of models. As a 
substitute, the scientific community has investigated remotely-sensed data to provide spatial 
estimates of crop yield (Moulin et al. 1998, Guérif and Duke 2000, Lobell et al. 2003, Olioso 
et al. 2005, Mo et al. 2005, Houlès et al. 2007, Ortiz-monasterio and Lobell 2007, Tasumi and 
Allen 2007, Duchemin et al. 2008a).  

In this context, Earth Observation Systems designed to provide both high spatial resolution 
(10 m) and frequent (daily) time of revisit offer strong opportunities. At the present time, two 
of them appear of particular interest: 1) the FORMOSAT-2 Taiwanese satellite 
(http://www.nspo.org.tw), which can provide high spatial resolution (8m) images every day in 
4 bands ranging from blue to near-infrared spectral domains ; 2) the Advanced Synthetic 
Aperture Radar (ASAR), onboard ENVISAT mission (http://envisat.esa.int/), which operates 
in the C-band with 7 different incidence angles between 15 and 45 degrees at a spatial 
resolution of about 30m in the Alternating Polarisation mode. The orbital cycle of ASAR is 
35 days, but the combination of acquisitions with different incidence and path configurations 
allows a revisit time of a few days. Optical data have been intensively used in the context of 
farm management (e.g. Scotford and Miller 2005). In contrast, there is a poor understanding 
of the radar response to agricultural soil and plant conditions (Moran et al. 2002). 

In this study, we investigated the potential of FORMOSAT-2 and ASAR data for the 
monitoring of irrigated wheat crops over a 10 km² semi-arid area located in the 
Tensift/Marrakech plain. We first used a time series of FORMOSAT-2 images acquired 
during the 2005/2006 agricultural season to characterise the vegetation dynamics. In a second 
step, this information is incorporated into a canopy functioning/water balance model to 
provide spatial estimates of green leaf area index, dry aerial biomass and top-soil moisture. 
These outputs are evaluated at the field scale using data collected at ground on 8 wheat fields. 
Finally, we capitalize on the knowledge of plant/soil conditions in order to interpret radar 
images, using simulations of green leaf area index and topsoil moisture to analyse the spatio-
temporal variations of ASAR backscaterring coefficients. 
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II. Materials and methods 

II.1. Study area 

The experiment was set up during the 2005-2006 wheat agricultural season on an irrigated 
area located at 40 km East of Marrakech. This area was intensively monitored as part of the 
SudMed program (Benhadj et al. 2007; Chehbouni et al. 2007; Duchemin et al. 2005, 2006, 
2008a, 2008b; Hadria et al. 2006, 2007; Er-Raki et al. 2007). It covers about 2800 ha and is 
almost flat (slope less than 1%), with deep soil of xerosol type and a fine, clay to loamy, 
texture. 

Land-use information and soil management practices were collected on numerous fields 
within the study area. The dominant crops are cereals, mainly wheat. The wheat is generally 
sown between mid November and mid January; it reaches its peak of growth between mid-
March and Mid-April; and the harvest occurs in May-June.  

The experimental data set includes information on agricultural practices (ploughing, sowing, 
irrigation, fertilisation, weed and pest controls) for about 70 wheat fields. Amongst them, 8 
test fields were sampled to estimate biophysical variables following the protocols described in 
Duchemin et al. (2006) and Hadria et al. (2007): the green leaf area index was measured at the 
end of March, and dry aerial biomass was collected at the same time and just before harvest. 
These variables were measured on 3 samples of 1m² for each of the 8 test fields. 

Climate is basically of semi-arid continental type. Climatic data were measured by a 
meteorological station installed at the center of the study area, and five rain gauges of the 
ORMVAH network located in the vicinity of the study area. The beginning of the 2005-2006 
agricultural season was very dry, with only two minor rainfall events (10-15mm) mid- and 
end-November, after which no rain was recorded until December 21, 2005. In contrast, the 
season was exceptionally wet in January and February (accumulated rainfall about 200mm), 
then no rain was observed in March and April. As a consequence, irrigation water was mainly 
supplied from mid-March to the beginning of May, and mid-December in a less extent. 

II.2. FORMOSAT-2 images 

FORMOSAT-2 has been launched by the National Space Organization of Taiwan (NSPO, 
http://www.nspo.org.tw/, http://www.spot-image.com). It is operational since May 2004 onto 
a sun-synchronous orbit, with onboard the Remote Sensing Instrument (RSI). RSI provides 
high spatial resolution images (8m in the multispectral mode for nadir viewing) in 4 narrow 
spectral bands ranging from 0.45 µm to 0.90 µm (blue, green, red and near-infrared). Unlike 
other systems operating at high spatial resolution, FORMOSAT-2/RSI observes a particular 
area every day with the same viewing angle. However, it only surveys a part -about the half- 
of the Earth. 

The FORMOSAT-2 images used in this study have been collected from November 2005 to 
May 2006 (see Duchemin et al. 2008b). The images were programmed with a nominal time 
step of 4 days and about 50 images were acquired during this 7-month period of interest. 24 
images were eliminated because they were contaminated by clouds. All images were acquired 
with an off-nadir angle of 18°±1°, viewing to the west across track. The images were 
georeferenced using an autocorrelation algorithm and a set of ground control points collected 
with GPS. Accuracy in geolocation was estimated to about half-pixel (4 m). The atmospheric 
correction was performed using the SMAC code (Rahman and Dedieu 1994) with 
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atmospheric water vapour content and aerosol optical depth collected by CIMEL 
sunphotometers installed in the vicinity of the study area. The quality of atmospheric 
correction is discussed in Hagolle et al. (2008). This processing provided us with 26 images of 
surface reflectances, from which two vegetation indices were calculated: (1) the Ratio 
Vegetation Index (RVI), which is simply the ratio of near infrared to red reflectances, (2) the 
Normalised Difference Vegetation Index (NDVI), defined as the difference between near 
infrared and red reflectances divided by their sum. The two indices were suggested by Rouse 
et al. (1974). These indices were tested against ground measurement to estimate green leaf 
area index from FORMOSAT-2 images. 

II.3. ENVISAT/ASAR data  

The Advanced Synthetic Aperture Radar (ASAR), onboard the ENVISAT mission 
(http://envisat.esa.int/) launched in March 2002, operates at C-band (frequency 5.33 GHz, 
wavelength 5.6 cm) with 7 different incidence angles between 15 and 45 degrees at a spatial 
resolution of about 30 m in the Alternating Polarisation mode. The revisit time for a given 
configuration of incidence angle and orbit pass is 35 days, but the combination of different 
incidences allows to increase the repetitivity of observations (e.g. 10 passes during the 35-day 
orbital cycle at 45° latitude).  

Between December 2005 and May 2006, 15 ASAR Alternating Polarisation images were 
acquired, all in ascending pass. The images were acquired at high incidence angles (IS5 to IS7, 
35.8° to 45.2° incidence angle), for which the sensitivity to vegetation is maximal (Mattia et 
al., 2003; Brown et al, 2003). The images were acquired in dual polarisations (VV and HH) at 
a spatial resolution of about 30 m (12.5 m pixel size). Radiometric calibration was performed 
following the procedure specified by the European Space Agency (Rosich and Meadows 
2004). All the images were superimposed using an automatic correlation algorithm based on 
contrasted objects visible in the images, then the images were co-registred on FORMOSAT-2 
data using image-to-image correction.  Accuracy in coregistration was estimated to about 1 
pixel (12.5m). Finally, a spatio-temporal filter was applied to reduce speckle effects. The filter 
is described in Lopes et al. (1993), Le Toan et al. (1997), and Quegan and Yu (2001).  

II.4. Soil/plant modelling  

The SAFY ‘Simple Algorithm For Yield estimate’ is a canopy functioning model developed 
by Duchemin et al. (2008a). It includes three sub-sets of equations to simulate the time 
courses of total/green leaf area index (TLA/GLA), dry above-ground mass (DAM), and Grain 
Yield (GY). The model simulates these variables with no explicit account of water and 
nutrients. It only requires climatic forcing variables (daily incoming global radiation and daily 
average air temperature) as an input, and the adjustment of three key parameters (the effective 
light-use efficiency, the date of plant emergence, and the cumulative thermal unit between 
emergence and senescence). These three parameters were adjusted from estimates of green 
leaf area index derived from FORMOSAT-2 images.  

The SAFY model was used to drive a soil water balance that was described and evaluated in 
Duchemin et al. (2005). The model calculates soil evaporation and plant transpiration using a 
dual-crop coefficient approach (adapted from FAO paper #56, see Allen et al. 1998, Allen 
2000). Three layers are implemented to describe soil water transfers: (1) a 5-cm depth top 
layer, (2) a root zone, which progressively increases to reach maximal value at the end of the 
vegetative phase, (3) a deeper layer, until 1m, that plays the role of a bank of the water 
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accumulated during the agricultural (rainy) season. The model simulates soil water contents 
within these 3 layers with reference evapotranspiration and water supply (rainfall and 
irrigation) as inputs. The topsoil humidity (HM1) is used together with GLA to analyse the 
spatio-temporal variations of radar data. 

Simulations were performed at a daily time step on 69 fields where irrigation data are 
available. The outputs were evaluated on the 8 test fields where Green Leaf Area index (GLA) 
and Dry Aerial Mass (DAM) were measured at ground. 

 

III. Results and discursions 
 
III.1 Typical time courses of  NDVI and σ0

HH/VV 

As a first analysis, the Normalised Difference Vegetation Index (NDVI) and the ratio of HH 
to VV backscattering coefficient (σ0

HH/VV) were compared between three field with different 
vegetation types: young olive trees with a vegetation fraction cover measured at field to about 
30%, fallow and wheat (fig. 1). For the three fields, NDVI and σ0

HH/VV
 follow comparable 

time courses: 

• Olive trees: both NDVI and σ0
HH/VV

 remains rather stable, around -1db and 0.35, 
respectively. This stability is explained by the fact that olive tree didn’t vary significantly 
in 6 months. The small peaks observed on March and April (DO2Y 440 to 480 in fig.1) 
are due to the weeds that growth between trees during this period. 

• Fallow: at the beginning of the season, σ0
HH/VV is around -1.5db and NDVI is about 0.15. 

These values are characteristic of bare soils. σ0
HH/VV and NDVI progressively increase 

after the first significant rainfall to reach their maximum values at the beginning of April 
(DO2Y=470 in fig.1), then decrease with the vegetation senescence. 

• Wheat: the most important temporal variations of σ0
HH/VV and NDVI are observed for the 

wheat field. Both indices clearly describe the cycle of wheat plants: they displays 
minimum values in November-December (at the sowing period), then a rapid increase to 
maximum values mid-March (DO2Y=450 in fig.1) when plant reaches maturity, and a 
final decrease until May at the harvesting time.  

 

 

 

 

 

 

 

Figure 1. Time courses of σ0
HH/VV and NDVI for 3 vegetation types: olive trees, fallow and 

wheat. Blacks symbols correspond to ASAR observation (stars, circles and plus for 
incidence angles IS5, IS6 and IS7). Green dots represent NDVI. DO2Y is day since 1/1/05 
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monitor the vegetation dynamics. However, there is much scatter on ASAR than on 
FORMOSAT-2 data, due to differences in incidence angles and the high sensitivity of the 
radar response to surface characteristics that experience a large spatio-temporal variability 
(topsoil moisture, surface roughness). 

 

III.2 Inversion of Green Leaf Area index from FORMOSAT-2 data 
The two vegetation indices (RVI and NDVI) derived from FORMOSAT-2 data were tested to 
estimate Green Leaf Area index (GLA). For this purpose, we compared GLA measured at 
ground on 24 plots (3 samples of 1 m² for each of the 8 fields) to the values of the vegetation 
indices of the pixels which includes the plots. The measurements, which were performed at 
end of March (March 20 to 24, 2006), range from 1.2 to 6.2 m²/m² at this time. They were 
compared to NDVI and RVI indices derived from the FORMOSAT-2 image acquired on 
March 24. The result shows that the RVI performs the best to fit GLA. The scatterplot and the 
GLA-RVI relationship are presented in figure 2. The root mean square error between the 
measured GLA and those derived from the FORMOSAT-2 image using this relationship is 
about 0.8 m²/m² (relative error of 25%). This error appears of the same order than that 
reported in other studies (e.g. Weiss et al. 2004, Duchemin et al. 2006).  
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Figure 2. GLA-RVI scatterplot 

 

III.3 Time courses of Green Leaf Area index (GLA) and Dry Aerial Mass (DAM) 

In figure 3, we present the comparison between the green leaf area index simulated by SAFY, 
that retrieved from the 26 FORMOSAT images all along the agricultural season and that 
measured on each of the 8 test fields. This figure shows the capability of the model to 
accurately simulate the time courses of green leaf area index, despite a slight overestimation 
at the very beginning of the agricultural season. The model also appears able to simulate GLA 
spatial variations: at the end of the vegetative phase (end of March), the green leaf area index 
measured at field varies between 2.2 and 6.2 m²/m², and the root mean square error between 
measurements and simulations is 0.85 m²/m² (relative error of about 20%). 

In figure 4, we compare the dry aerial biomass simulated and that measured on each of the 8 
test fields. At the end of vegetative phase (end of March), the biomass measured at field 
varies from 0.2 to 0.75 kg/m², and the root mean square error (rmse) between measurements 
and simulations is about 0.1 kg/m² (relative error of about 20%). At the end of the season, the 
accuracy of the model decreases: measurements range between 0.6 and 1.3 kg/m², the rmse is 
0.5 kg/m² (relative error of about 60%).  

These results confirm the performance of the SAFY model to simulate the spatio-temporal 
dynamics of wheat canopies, especially during the vegetative period. 

G
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Figure 3. Green leaf area index (GLA) simulated by the SAFY model (lines), derived      
from FORMOSAT-2 data (black stars) and measured at field (blue squares, green      

circles and red plus correspond to minimal, mean and maximal values, respectively) 
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Figure 4. Simulated (lines) and observed (stars: min, max                             
and average values are presented) dry aerial biomass 
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III.4 Potential and limits of ASAR data for the monitoring of irrigated wheat crops 

In this section, the simulated soil/plant conditions were used to analyse the space time 
variations of the ratio of HH to VV backscattering coefficients (σ0

HH/VV) derived from ASAR 
images. The sensitivity of HH/VV backscatter to wheat canopy biomass is caused by the 
differential attenuation of horizontally and vertically polarized electromagnetic waves that 
propagate through a medium with vertical structure (Bracaglia et al. 1995; Picard et al., 2003).  

Simulations of green leaf area index (GLA) and top soil humidity (HM1) are available on the 
69 fields where irrigation data are known. ASAR data were averaged to one value for each 
field to minimize the speckle effect. Field-averaged σ0

HH/VV are compared to GLA for the 
three incidence angles (IS5, IS6 and IS7) in figures 5, 6, 7, where the distribution of topsoil 
moisture is also plotted. GLA is used as an indicator as the total vegetation water content, 
which is believed correct during the vegetation phase when simulations are the most accurate 
and when the vegetation water content does not experience large variations. 

At the very beginning of the agricultural season (December), σ0
HH/VV varies a lot, from -2 db 

to 1 d. There is no clear impact of incidence angles and soil moisture on σ0
HH/VV (compare 

top-figures 5 to 7). The range of variation of σ0
HH/VV is still large even when the vegetation 

recovering is null and when the top-soil moisture is rather homogeneous (see top-figures 5 
and 7). The explanation lies in surface roughness. Indeed, there are 3 categories of surface 
states at this period of year, depending on agricultural practices: fields may be harrowed 
(sown or prepared to be sown), ploughed in depth (but not yet harrowed), or smooth (not 
ploughed neither harrowed). These conditions result in large variation of surface roughness, 
with root mean square error associated to surface height profiles from about 0.5 to 6 cm 
according to the classification of Davidson et al. (2000).  

In January, a large scatter on σ0
HH/VV is also observed, despite the soil conditions are 

homogeneous, either dry (14/01/06, in fig.5) or wet after heavy rainfall (17/01/06, in fig.7). 
This scattering prevents the use of ASAR data to monitor the vegetation just after emergence. 
This indicates that there is still a large heterogeneity of surface roughness between fields, 
even after sowing. 

Relationship between GLA and σ0
HH/VV can be noticed for the three images acquired in 

February. On the first image (02/02/06, IS6, fig.6-middle), there is a large scatter on σ0
HH/VV, 

despite soils are homogeneously wet. On the second one (18/02/06, IS5, fig.5-middle), there 
is also a large scatter on σ0

HH/VV, which can be due to heterogeneity of topsoil moisture as 
well as surface roughness. The relationship is only clear for the third image (21/02/06, IS7, 
fig.7-middle), which have been acquired just after an important rainfall that saturates top-soil 
moisture. On this scatterplot, ones can see that σ0

HH/VV saturates when GLA is larger than 1.5. 
These scatterplots appear consistent with those of other experiments (e.g. Mattia et al. 2003, 
2005), though the saturation seems more intense in the conditions that prevail in this study. 

From March to May, there is no clear relationship between GLA and σ0
HH/VV. The possible 

explanations are the following: (1) as previously discussed, σ0
HH/VV saturates at high GLA 

values; (2) this period corresponds to the maximal heterogeneity of topsoil moisture because 
of irrigation, but the sensitivity of the radar response to surface soil moisture content is 
substantially decreased at high GLA values; (3) the radar response is also due to interaction 
with ears, in addition of leaves and stems; (4) variations in vegetation water content, which 
are not accounted for here, becomes larger at the end of the agricultural season. 
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Figure 5. σ0
HH/VV - GLA scatterplot (incidence angle 5) 
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Figure 6. σ0
HH/VV - GLA scatterplot (incidence angle 6) 
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IV. Conclusions 
 
The main conclusions of this research are threefold: 

(A) The accuracy of the inversion of wheat canopy biophysical variables (green leaf area 
index) from vegetation indices derived from FORMOSAT-2 images is around 25%. The 
inversion is more accurate since directional effects are minimized (constant viewing angles). 
This makes possible the use of non-normalised indices (e.g. RVI instead of NDVI).  

(B) The SAFY model appears as a good interpolator of the green leaf area index. It also 
accurately simulates the time courses of dry aerial mass during the vegetative phase (relative 
error of about 20% on these two variables at the peak of greenness). These results appear 
correct given the heterogeneity of canopies in the study area (sowing period from the end of 
November to the beginning of January, grain yield from 1 to 4 t/ha).  

(C) In the conditions that prevail in this study, the sensitivity of ASAR data to the vegetation 
density appears very low. It is in fact non existent except at the tillering period and when the 
soil conditions are homogeneous, after heavy rainfall. Only upon these (very restrictive) 
conditions, ASAR data can serve as a substitute to optical data for the monitoring of 
vegetation canopies.   
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