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Abstract   
Various recently intensively investigated approaches, based on certain type of embedded 
intelligence exploitation, can be used also in the area of water management. A big class of them, 
based mainly on various types of multi-agent systems, are useful for incorporating complexity in 
ecosystem modelling in general. By incorporating a high degree of social and spatial 
heterogeneity multi-agent systems could also represent “nested hierarchies” and phenomena 
emerging across different scales. This is also an appropriate approach for capturing spatial 
phenomena in biophysical modelling. It enables the investigation of lower-level mechanisms that 
might lead to the development of higher-level structural and dynamical features in landscapes.    
The paper is oriented on summarization of recent results of existing as well as possible multi-
agent systems application in various sub-areas of water management. As multi-agent systems are 
very suitable also as a framework for ambient intelligence environment, some first ideas about 
exploitation of these approaches in water management and especially for river basin management 
will be presented as well. All the results are based on a series of ongoing mutually interconnected 
research projects.   
   
   
1 Introduction   
   
Our research is focused on application of information and knowledge technologies in the area of 
water reservoir management. The recent project AQUIN was dedicated to the development of 
knowledge-based system that would capture the expertise of dispatchers who control the outflow 
from single reservoir (which is a source of drinking water for inhabitants along the river). For 
details, see (Toman et al., 2004) or (Olševičová and Ponce, 2004). In the current project 
AQUINPro, we explore the suitability of applying computational intelligence methods and 
knowledge engineering approaches in solving more general task: in managing systems of several 
reservoirs. Results of both projects will be used by professionals of the water management 
company from Western Bohemia.  

1.1 ICT support of decision making in water management  

The dispatchers who manage the water reservoir tend to keep the water level in reservoirs as high 
as possible, except situation when the danger of flood appears after intensive rainfalls (then the 
levels have to be decreased preventively to allow reservoirs to accumulate extra volume of 
inflowing water). The manipulations on the reservoir outflow have to satisfy sets of objectives, 
defined by customers of the water management company, who ask for  

 delivering required amount of water to consumption points, changing the flow in the river 
(to water down the contamination, to oxygenate water for fish),  

 achieving certain flow in given time slot (increasing flow for canoeing competitions) etc.  
These objectives are often contradicted (Ponce, 2003), (Ponce, 2006).  



The process of decision making about manipulations on reservoir outflows is highly complex, 
requiring data, information, and domain expertise. The dispatchers take into account current and 
historical data from measuring stations on reservoirs and rivers, general characteristics of river 
basins, weather forecasts  etc. Each dispatcher applies his specific knowledge and domain 
expertise. Newcomers need at least 3-5 years to learn about manipulations on particular system of 
reservoirs.  
Except operational decisions about manipulations, dispatchers participate on solving long-term 
tasks, such as  

 changing the hydrodynamic models describing the river basin,  
 planning reconstructions of river banks,  
 strategic reasoning about the need of  new reservoirs construction etc.  

Operational, as well as strategic decision making can be supported by information and 
communication technologies. We can think of two kinds of applications:  

 centralized knowledge based system or decision support system can simulate dispatcher’s 
activities and can provide solution his/her task, such as manipulation recommendations,   

 several task-specific subsystems can be used to support dispatcher’s final decision making 
e.g. by summarizing data, searching for similarities in data, visualizing data etc.  

Both kinds of solutions can rise from the multi-agent paradigm.   
Typical tasks in water management are usually described in literature as socio-economic 
ecological modelling. Generally, a system of interactions between ecological (biological, 
hydrological, physical, geological) dynamics, social dynamics and economic dynamics is 
investigated. Typical questions in this area involve:     

 How to manage collectively the common/shared property (water and land management 
policies, costs, effects; tradeoffs between competing water and land uses; optimal 
allocation of water and land resources)?   

 What impact would have alternative use of natural resource (alternative resource 
management policy, alternative land and water use, alternative crop growth and 
technology usage), e.g. impact of alternative land use on cover changes (trends in 
deforestation and reforestation, sustainability of agricultural practices, evolution of 
settlements)?   

The socio-economic ecological model is usually composed of two models:    
 Ecological model    
 Socio-economic model   

Ecological model can have components such as land units (described in terms of size, soil 
texture, soil depth, land slope), land use, river, irrigation canal, village. Dynamics of the 
ecological model is also be defined, e.g. water balance model (using parameters such as rainfall, 
irrigation, runoff, deep drainage, water stored in the soil reservoir, evapotranspiration). Several 
modelling techniques can be used.   
The belief in the omniscient model which, thanks to the differential equations, calculation power 
and remote sensing, would lead to the construction of a model capable of calculating water and 
material flows at each point of a river basin, is not realistic (Wasson et al., 2003). It seems that 
this approach failed (Beven, 1989) due to two reasons:   

 Difficulties of a conceptual nature related either to grid discretisation, or to the physical 
laws used (e.g. Darcy’s law was developed for homogenous and isotropic environments 
and its extension to a kilometric grid is far from obvious);   

 Technical difficulties: a great many data, especially those concerning subsoil, are 
inaccessible. Generally, acquisition of all data is economically incompatible with an 



operational context. This means that certain parameters require calibration, quickly 
making the associated numerical problems (parameter sensitivity) insolvable.   

Socio-economic model have components called stakeholders, e.g. farmer, land owner, migrant 
representative. Dynamics of the socio-economic model is also defined, typically using theory of 
game-playing. Multi-agent system is used here as a modelling technique.   
The complex socio-economic ecological model can be supported also by GIS (Berger, 2000).   
How the physical space and the social space will be interconnected? Emerging social norms, land 
allocation to immigrants, and common pool resources management, in general, are examples 
where micro-level phenomena influence macro-level outcomes that in turn affect units at the 
micro scale (Berger, 2000).    
In models of complex systems, interdependencies and heterogeneity of biophysical environment 
often lead to what are called nonconvexities – an irregular and rugged abstract surface describing 
the relationship between the parameters of the system and possible outcome states (Parker et al., 
2001).   
Interrelated socioeconomic and biophysical processes can be represented at multiple scales which 
mean that we incorporate complexity in natural resource use modelling (Berger, 2000).    
Integrating land and water is essential for capturing the dynamics of interrelated biophysical 
systems (Lambin et al., 1999) and it is itself a complex task.   
Artificial life techniques are useful for incorporating complexity in ecosystem modelling in 
general. By incorporating a high degree of social and spatial heterogeneity multi-agent systems 
could also represent “nested hierarchies” and phenomena emerging across different scales 
(Parrot, 2000). It is also an appropriate approach for capturing spatial phenomena in biophysical 
modelling.    
In a sense related cellular modelling techniques, such as cellular automata and Markov models 
have been applied to landscape modelling ((Bockstael, 1999); (Parker et al., 2001)) as well. The 
basic units for modelling locally interacting “objects” are cells forming a grid, whose transition 
rules include their previous state and the state of the neighbouring cells. Advanced models use 
Geographical Information Systems to store information about the state of cells in a landscape and 
feed this information back into the cellular automaton. The cellular automata approach can also 
be used to represent the interactions of humanlike agents in physical or social space. Typically, 
the agents occupy positions on a two-dimensional grid of cells and the distances between them 
influence their interactions. (Balmann, 1997) and (Berger, 2000) employ a cellular automaton 
framework, which in the case of (Berger, 2000) is directly linked to soil information and 
hydrology modelling.    
In a couple of our recent projects we tried to apply some knowledge-based approaches into the 
water management area first. These results are described, e.g., in (Mikulecky, Olševičová, Ponce, 
2008). Our recent effort is oriented on employing various approaches of watershed modelling 
using multi-agent systems and first ideas on ambient intelligence principles exploitation appeared 
as well. We shall describe these in more detail in the following parts of the paper.     
   
2 Multi-agent paradigm  
 
According (Russell and Norvig, 2003), an agent is anything what perceives surrounding 
environment through sensors and acts in the environment through actuators. This initial definition 
was refined by numerous authors, namely by enumerating the essential properties of agents. (Lee, 
2006) defines intelligent agent (IA) as the exemplification of human intelligence in a device. The 
agent’s intelligence consists of possessing knowledge (with three levels: derived knowledge, 



stimulated knowledge, and intuitive knowledge) and the manipulation of knowledge (the 
“thoughts or thinking” which consists of three levels: logical thinking, lateral thinking, and 
intuition). This device (the IA) can exist in the form of a system, a software program, a program 
object, or even a robot. The agent should possess ten following properties: autonomy, mobility, 
reactivity, pro-activity, adaptability, communicativeness, robustness, learning ability, task-based 
orientation, goal-based orientation (Lee, 2006).  
Three main categories of agents are differentiated in the literature. Except intelligent agents, there 
are reactive agents, and social agents.  

 The intelligent (rational, deliberative, reasoning) agent operates with an internal 
representation of the world and plans activities with respect to the given goal. 
Architectures such as belief-desire-intention model allow us to define mental states of 
agents and apply modal and temporal logic to them; see e.g. (Rao and Georgeff, 1991). 
Then the intelligent agent’s behaviour approximates human ways’ of problem solving. In 
the design of the agent, the research results of artificial intelligence, game theory, 
statistics and other disciplines are reused.  

 Reactive agent has no memory, does not plan activities and only reacts to stimuli from the 
environment. Hardware reactive agents (robots) are much cheaper in comparison with 
intelligent agents what makes them quite attractive (Brooks, 1999).  

 Social agent acts in group. The behaviour of the agent populations is often significantly 
different from the behaviour of single agent. The emergence of new qualities in agent 
populations is intensively researched.  

The design of agent is derived from its mission and depends on characteristics of the 
environment. The features of the environment are discussed in (Russell and Norvig, 2003). Fully 
observable, deterministic, episodic, static, discrete environment with one agent is much easier to 
be analyzed, than partially observable, stochastic, sequential, dynamic, continuous environment 
with several heterogeneous agents. Real-life (social, natural) processes tend to have the least 
desirable characteristics.  
The agent-based approach is worth mentioning in case we face open, highly dynamic, variable, 
bad structured, uncertain situations, where  

 environment can be seen as a system of autonomous, cooperating or competing entities,  
 data, control or expertise are distributed,  
 the system can be divided into independent components  

(Wooldridge and Jennings, 1995), (Wooldridge, 2002). In the domain of water management, the 
multi-agent metaphor is applicable in different directions, as we explain bellow. 
  
3 Proposed solutions  
 
In the scope of our first project AQUIN, the architecture of the centralized system, based on 
CommonKADS methodology (Schreiber et al., 2000) was specified. In CommonKADS, the term 
agent corresponds to any entity that provides or processes data, information or knowledge (e.g. 
dispatchers, water management company customers, measurement stations along the river, hydro-
power plant). The software design according CommonKADS is focused on agents that solve 
tasks reusing domain knowledge models. Typical tasks in water management domain follow.  

 In classification, the input data about the current state are interpreted and evaluated. 
Dispatcher classifies situations in the river basin, e.g. using weather data he discriminates 
between dry and wet periods. 

 In diagnosis, the data are processed to identify problem. Dispatcher explains the changes 



of inflow to reservoir according his knowledge about accumulation of water in woods 
around the reservoir.  

 In forecasting/prediction, it is examined how the world change in dependence on certain 
variables. Dispatchers forecast the impacts of manipulations. 

 In generating possibilities, the objective is to create alternative ways of problem solving. 
Dispatcher generates alternative sequences of manipulations to decrease the level in the 
reservoir in requested period.  

 In action recommendation, the alternative plans are compared. Dispatcher chooses the 
plan of manipulations to optimize the usage of hydro-power plant installed on the 
reservoir.  

In terms of multi-agent systems, our final application was seen to be either knowledge-based 
system simulating activities of human dispatchers (i.e., generating and explaining scenarios of 
manipulations on reservoirs), or decision support system (solving partial tasks, or evaluating 
variants defined by human dispatcher), Then we elaborated other scenarios of usage multi-agent 
metaphor in the context of the project.  

3.1    Dispatcher as a single agent    

An  intelligent agent refers to computer software that has access to one or multiple, 
heterogeneous and distributed information sources, pro-actively searches for and maintains 
relevant information on behalf of users or other agents preferably just-in-time. An intelligent 
system should be adaptive, flexible and robust (Florian, 2003). It must be able to react to 
situations which are similar to previous and adapt to new situations and to the changes in its 
environment. The intelligence of such system is conditioned by:  

 Ability to learn from data and gain knowledge  
 Ability to save knowledge  
 Ability to use these knowledge in real concrete situations 

Developing intelligent agent needs expertise from different disciplines: artificial intelligence, 
advanced databases and knowledge systems, distributed information systems, adaptive 
information retrieval, and human computer interaction (Friedewald and Da Costa, 2003).  
The knowledge-based system, able to suggest manipulations on reservoirs, can be modelled as an 
intelligent agent (digital dispatcher). Its knowledge base contains the expertise of human expert 
(dispatcher of the water management company). As there work several dispatchers in the 
company, the knowledge acquisition has to be organized using methods of knowledge 
engineering and knowledge management (see e.g. (Awad and Ghaziri, 2003)). Except 
consultation with domain experts, data-mining methods can be applied to discover knowledge 
from archives and repositories. Unhappily, in the company a significant part of historical records 
is not stored in an electronic form. In water management domain this means a bottleneck. The 
prediction of inflows into reservoirs can be based on comparing current situation with historical 
cases. In context of Czech climatic conditions, similar hydrological situations appear only in the 
same period of the hydrological year. Then, the daily records from previous 20 years mean 20 
classes of month records, each containing 30 daily values. This amount of data does not enable 
usage of machine learning and data mining methods.  
The critical component of digital dispatcher would be its interface. Part of input data is collected, 
delivered and stored automatically, but part of it is obtained from plain text (e.g. weather 
forecasts, historical records about manipulations), images (satellite scans) or even from phone 
calls records (e.g. with operators on reservoirs). The introducing of knowledge-based system in 



the company can not generate new stereotype duties for employees, i.e. we can not expect 
dispatchers to spend time on loading data to the application.  
The advantage of digital dispatcher is that it could serve as a tutoring agent for newcomers. Less 
experienced dispatchers learn about reservoirs behaviour and need training cases and feedback 
from experienced dispatchers. The newcomer can learn by observing the reasoning and outputs of 
digital dispatcher. Moreover, the application equipped with tutoring module can generate 
assignments for learner and evaluate his/her performance. Here it is important to separate the 
dispatcher’s knowledge model and logic from the tutoring knowledge model and logic. The 
tutoring functions are independent on the problem domain and the independence on knowledge 
model of partial river basin enables the application to be used in other water management 
companies. For details about electronic tutoring agents, see e.g. (Shaw et al., 1999).   

3.2    Dispatching as a multi-agent system   

There are several dispatchers in the company and during one day, only one of them makes 
decisions. The rotation of dispatchers in relays influences the total quality of decision making, 
because of impacts of individual decisions on situation in the river basin in several next days.  
The functioning of dispatching centre can be simulated by the multi-agent system (digital 
dispatching), where each dispatcher is modelled by one reasoning agent. For coordination of 
agents the blackboard architecture is suitable (Jackson, 1999). The blackboard serves as the 
media for communicating manipulation scenarios (and relevant constraints) suggested by 
different dispatchers.  
Each agent operates with its individual knowledge base, corresponding to unique experience of 
the human dispatcher. In each (relay), only one agent is active and can change the content on the 
blackboard.  
For the purpose of exchanging information among agents in digital dispatching, ontologies 
establish common understanding of concepts and relations in the domain (Gómez-Pérez et al., 
2004). Internal design of each agent can be different. Although we do not expect experts from the 
same domain to use totally different reasoning procedures, this is the way how to capture the 
contradictory expertises of individual specialists.  
The architecture of digital dispatching allows introducing different types of agents, such as 
agents modelling customers of the water management company. These agents can access the 
shared blackboard to present their requirements. (In practice, at the dispatching centre in the 
company a real blackboard is used for communicating operational requirements).  
In crisis (during floods) human dispatchers make decisions in the group. In this case the 
negotiation and coordination techniques can be applied (Wooldridge, 2002).   

3.3    Fully decentralized application   

The network of rivers and technical devices along them (reservoirs, dams, hydro-power plants, 
sewerage plants, consumption points) can be seen as the network of autonomous agents. Part of 
agents can act (and by action also influence its surroundings), e.g. setting of the reservoir outlet 
influences the flow in the river down stream.  These agents can be modelled as locally reasoning 
agents, with certain range of actions. Other agents, such as measurement points, only provide 
data. The neighbouring agents (in sense of real physical distance of modelled objects) can 
communicate; typically they exchange values of variables.  
In this conception, the reasoning process is fully distributed and decentralized. There is no central 



authority (no single digital dispatcher). Each agent is equipped with relevant part of knowledge 
model of the domain and its individual objectives. The deputing the decision making to the lower 
level simplifies the reasoning process of each agent.  
As well as in communication of dispatchers, the exchange of information among neighbouring 
agent requires establishing the shared vocabulary, based on ontologies. More than in digital 
dispatching, the negotiation and coordination techniques are relevant. The agents of upper objects 
in the river basin have to be proactive and benevolent to needs of agents of lower objects. 
Typically the setting of the upper reservoir outflow must be acceptable for the lower reservoir.  

3.4    Agent-based simulations   

When they reason about manipulations on reservoirs, human dispatchers face the uncertain values 
of most parameters that have to be estimated (typically the saturation of soil, the progress of 
rainfalls, snow melting speed). Instead of traditional numeric hydrological, geological and 
meteorological models, the simulation on principle of reactive agents can be used for description 
of processes in the area close to reservoirs and rivers. For better demonstration of this idea, we 
developed the extension of model in NetLogo.  

3.5    Demonstrator in NetLogo   

NetLogo (NetLogo, 2007) is an environment for development of complex, multi-agent models, 
evolving in time. It is possible to create populations of movable agents in the grid of stable 
agents.  
Our sample models were created by extending the model Grand Canyon (Wilensky, 2006), using 
data from (Seamless Data Distribution System, 2007). The original model operates with GIS 
data. The area of 9,6 x 9,6 km is divided into squares 32x32 m (patches).  In our model, 
the experimental data were obtained from the GIS model of Eastern Bohemia. It was area of 
15x15 km divided into squares 50x50m. For each square, the value of elevation is defined. The 
movable agents (raindrops) appear (fall) in random locations and flow downhill. If no nearby 
patch has a lower elevation, the raindrop stays where it is. Raindrops pool until they flow over 
the land nearby (Wilensky, 2006).  
In our extension of the model, we added new parameters and modified the rules of agents 
moving:  

 There are different types of bedrock defined for each patch. According the bedrock, the 
raindrops flow slower or more quickly.  

 There are several classes of vegetation. The raindrops behave differently in patches with 
values indicating forest, meadows or inhabited areas.  

The course of simulated rain can be predefined. In the interface of the model, it is possible to 
choose subareas with or without rainfalls, and define the periods of raining.  
The natural consequence of flowing water downhill is that the watersheds and reservoirs form in 
the lowest parts of the modelled landscape. Through additional interface elements, user can 
manage the course of simulation by operating on such reservoirs.  
If the GIS data are detailed enough (i.e. the granularity of the grid of patches is fine enough), the 
watersheds correspond to real rivers. In case of less detailed division (with larger patches), the 
watersheds are wider and correspond to parts of landscape under water during floods. The highest 
possible precision of the model is determined by the GIS data and computing capacity for parallel 
processing.  



The results of simulation can be visualised in graphs and data can be stored for further processing 
in statistical software.  
Our simulation model helps knowledge engineers to communicate with domain experts, because 
dispatchers can perform their reasoning by solving modelled situations. The model is based on 
simple physical principles, but its large-scaled modifications are possible.  
 
 
 

 
 

Screenshot 1 - empty map  
 



 
 

Screenshot 2 - simulation model of rainfalls after 100 iterations  
 

 
 

Screenshot 3 - simulation model of rainfalls after 300 iterations  
 



 
 

Screenshot 4 - simulation model of rainfalls after 1000 iterations 
  

3.6 Neural network approach 

In the past decades there were developed numerous methodologies used for forecasting in water 
management (Jowett, 1997). All of these methodologies need a large amount of long-term high-
quality data (Alcázar at al., 2008). Likewise data sets are rarely disposable so we need 
methodology for processing of incomplete or small-amount data sets. Models of artificial neural 
networks are suitable solution, they can be applied in fields where statistical models are not 
effective (Atzberger, 2004) (Alcázar at al., 2008).  
In (Valverde Ramírez et al. 2005) a feedforward neural network and resilient propagation 
learning algorithm is used to generate site-specific quantitative forecasts of daily rainfall. 
Meteorological variables from the ETA model are used as input data to the trained networks, 
which generate rainfall forecast for the next time step.  
(Schleiter et al., 1999) tested the suitability of various types of artificial neural networks for 
system analysis and impact assessment in temporal dynamics of water quality based on weather, 
urban storm-water run-off and waste-water effluents; in bioindication of chemical and 
hydromorphological properties using benthic macroinvertebrates; and in long-term population 
dynamics of aquatic insects. 
(Moradkhani et al., 2004) explored the applicability of a Self Organizing Radial Basis function, 
which uses Gaussian Radial Basis Function architecture in conjunction with the Self-Organizing 
Feature Map to one-step ahead forecasting of daily streamflow.  
A study of the hydrological behaviour based on modelling the performance of the runoff 
produced by the river at different temporal scales of the Xallas river basin presents (Castellano-
Méndez et al., 2004). They used and compared classic statistical Box-Jenkins models and 



artificial neural networks. 
(Hsu et al., 1995) presents the structure and parameters of three-layer feed forward ANN model 
and demonstrates the potential of such model for simulating the nonlinear hydrologic behaviour 
of watersheds. Booth in (Tokar and Johnson, 1999) and (Minns and Hall, 1996) is a rainfall-
runoff model based on an artificial neural network presented. In (Alcázar at al., 2008) ANNs has 
been applied to environmental flow estimation.  
As we can see, ANNs become a very useful tool in the field of water management too.  The most 
important feature of neural networks is that they are a universal approximator of function. That 
allows us process data where the classical methods are unsuitable.  
 
4      Ambient Intelligence   
   
Insofar Ambient Intelligence is „a set of properties of an environment that are in the process of 
creating", therefore it is impossible to define this concept explicitly. According to the (ISTAG, 
2005), fulfilling the AmI vision depends on numerous domains and components, including:   

 sensor technology, bridging the physical world and the cyberspace,   
 embedded systems development technology,   
 ubiquitous communication including networks for active and passive tagging or internet 

access,   
 adaptive software that is self-managing and self-adjusting,   
 media management and handling supporting "produce one, present anywhere".   

Ubiquitous computing is characterized by interactions that are not channelled through a single 
workstation. Technical features of UbiComp systems include (Alcaniz, 2005):   

 'invisible' file systems, so user can access data without knowing specific file names, 
locations or formats,   

 automatic installation and optional migration of programs from a computer to another 
without requiring fundamental changes in configurations,   

 personalized information that is tailored to the user's requirements.   
AmI environment is characterized by merging of physical and digital space: tangible objects and 
physical environments are acquiring a digital representation. AmI artifact (also smart object, 
smart device) is an element of AmI environment which process information, interacts with 
environment, is autonomous, collaborative, composeable and changeable (Kameas, 2005).   
Independently from the wide range of the possible approaches, any AmI Environment is 
characterized by the following five key technologies (Aarts, 2003):   

 Embedded systems: devices are (wired or not) networked in the environment.   
 Context awareness: the system is able to recognize people and situational context.   
 Personalized applications: the system customized itself to meet people needs.   
 Adaptivity: the system is reactive to new habits, behaviours, needs of the user.   
 Anticipatority: the system anticipates human desires without conscious mediation.   

One of the most important problems in an intelligent environment is interaction of the user with 
the environment surrounding her/him. There is a number of very interesting approaches 
developed by various authors. We shall briefly analyze the most interesting ones.   
Ambient intelligence environments may be considered as strongly related with multi-agent 
systems in that they can be adequately modelled using multi-agent systems of various types. One 
of the most interesting approaches is based on the idea of so-called ad hoc agent environments.    
An ad hoc agent environment (Misker et al., 2004) is a way for users to interact with an ambient 
intelligent environment. Agents are associated with every device, service or content. The user 



interacts with his environment as a whole, instead of interacting with individual applications on 
individual devices. Devices and services in the environment have to be more or less independent, 
which fits well with the notion that agents are autonomous. The research was oriented on how the 
user is able to interact with the environment in such a way that he/she would have the control 
over collaborating agents. Some experiments showed certain tension between the user being in 
control and the autonomy of agents. Therefore the notion of cooperating groups was introduced 
as a way for users to gain control over which agents collaborate. Users can then establish 
connections between devices and content that are meaningful to them, in the context of their 
task.   
   
5    AmI application possibilities for watersheds   
 
The organizational model Aalaadin (Ferber and Gutknecht, 1998) has been quite often used when 
speaking about participative water management support. The core concepts of the Aalaadin are 
agent, group and role (Abrami et al., 2002): 

 An agent is defined as an active communicating entity, no constraints other than those 
triggered by the ability to play a role or not. 

 A group is defined as a set of agents. 
 A role is defined as an abstract representation of an agent function, service or 

identification within a group. The role encapsulates the way an agent should act within a 
group. Roles are local to groups. 

According to (Abrami et al., 2002) an agent can simultaneously play different roles in different 
groups, i.e. groups can freely overlap. An agent can enter or leave groups by acquiring or 
resigning a role, that is, groups are dynamic structures. Groups represent organizational levels 
and roles represent functions within these levels; through the roles it is handling, an entity gathers 
information from the different processes it is involved in without concern about eventual scale or 
time heterogeneity of these processes.  
If we adopt this approach further on, we can combine it with the ad hoc agent environment 
concept by (Misker et al., 2004) described above. This idea gives us a potential of using ambient 
intelligence concepts based on multi-agent models, usable for enhancing the watershed by 
various AmI artifacts capable of ubiquitous communication and helping intelligently to manage 
the watershed. The further research in this direction is on the way. 
   
6     Conclusion  
 
The multi-agent metaphor is reasonably applicable in water management domain. We identified 
several scenarios of multi-agent system usage in the scope of decision support of dispatchers 
from the water management company. Except traditional centralized architecture of single 
reasoning agent (computing counterpart of human dispatcher), it is possible to use systems of 
reasoning agents, or to apply multi-agent simulations for verifying hypotheses about the next 
course of processes in the river basin. Partial implementations of multi-agent applications are 
expected to simplify communication with domain experts during the process of modelling their 
knowledge, identifying their needs and summarizing requirements on final application 
functioning. Our next research will be focused on development of demonstrators of all presented 
scenarios of multi-agent applications.  
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