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Abstract

The article proposes a model for integrated management of a regulated water-
shed. In such systems, it is important to take into account not only the discharge
released at the reservoir, but also the natural flows due to rainfall. The proposed
model incorporates both inputs, and can be refined by considering different numbers
of sub-basins corresponding to tributaries of the river. We discuss the parameter
identification and show that the validation is improved when the discharge trans-
fer inputs are used in the model. These upstream discharge inputs correspond to
reservoir releases in the case of a regulated watershed. The model is tested on data
from the Tarn river in South-Western France.

1 Introduction

In many regulated watersheds, the reservoirs are used to release water in order to simul-
taneously satisfy withdrawals along a river reach and guarantee flow at certain critical
points. When these points are distant from the reservoir, the managers must account
for the transfer time as well as the possible contributions of the catchment area. For the
design of real time regulation tools, it is necessary to elaborate compact models for the
flow routing so as to predict the behavior of the river during various events (dam release
for example). However this transfer can be influenced by lateral inflows, in particular
the contributions due to the rainfall, which are generally underestimated in the existing
routing methods.
The purpose of this paper is to establish a compact model of flow routing integrating the
contributions due to the rainfalls. This model results from the coupling of a flow routing
model and a rainfall-runoff model. The flow routing model is a physical model, based on
the linearized Saint-Venant equations transposed in the Laplace domain. The downstream
discharge is then expressed analytically with respect to the upstream discharge (dam
release), and to lateral inflows distributed along the river reach. The lateral inflows result
from a rainfall-runoff model applied to the catchment area, which is divided into sub-basins
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whose runoff ends in a point of the principal river. The flow resulting from the rainfall-
runoff model is then distributed between the sub-basins according to their respective
surfaces, and is introduced into the river in the form of lateral inflow located at each sub-
basin mouth. In that way, the flow routing model takes the catchment contributions into
account. The integrated model is applied to a catchment area presenting a dam at the
upstream end, a set point (reserved flow) at the downstream and intermediate tributaries.

2 Problem statement and methodology

We consider the watershed of a river stretch where the upstream discharge Qu(t), function
of time t, may be controlled thanks to releases from a reservoir dam. At the downstream
end of the river stretch, the discharge Qd(t) is measured and must always be superior to
a critical threshold Qmin, also called reserved discharge, thanks to dam releases. Water
withdrawals for irrigation or domestic use may occur along the river, that dam releases
must compensate for in order to ensure the reserved discharge. Therefore, it is essential
to accurately evaluate the transit time in the river. For the reservoir manager, it is also
essential to avoid releasing too much water. A rainfall in the watershed could lead to
reduce the required release, provided its effect on the flow dynamics and amount are well
considered.
The present article proposes a new method of coupling a production function (e.g., rainfall-
runoff function) to the flow routing process in a stream. The considered system is com-
posed of two types of inputs: the upstream discharge Qu(t) and the climate data, P (t)
(rainfall) and PE(t) (potential evapotranspiration). The system output is the downstream
discharge Qd(t). In the dam release control framework, Qu(t) can be adjusted by the dam
manager according to management objectives. To this end, the manager needs transfer
functions to evaluate the flow routing in the river stretch and the influence of the rainfall
on the downstream discharge. In the context of real-time operation, the simulations must
be quick.
Here, we analyze how the transfer functions of the two types of input interact. We first
consider the flow routing model (Qu(t) → Qd(t)). Then, we establish the transfer function
of a distributed flow along the river stretch, which is referred to as the lateral inflow in the
following (ql(x, t)). Finally, the transfer function P (t) − PE(t) → ql(x, t) is established
using a rainfall-runoff model.
To calibrate such a model, a set of parameters has to be identified, based on the min-
imization of the error between simulated output (Qs(t)) and measured output (Qm(t)).
The identifiability of such a system is generally a problem since several sets of parameters
may give the same response (see e.g. Beven, 2001).
The basis of the approach is to derive the flow routing model from simple and easily
accessible characteristics of the river stretch. Modeling of flow routing in a river stretch
has been the subject of numerous publications since the 1950s. A comprehensive review
of approximate flow routing methods has been presented by Weinmann and Laurenson
(1979). Different linear models have been developed for flow routing simulation purposes
(e.g. (Dooge et al., 1987a; Tsai, 2003)). Most of them are based on an analysis of the
linearized Saint-Venant equations around a reference flow. The downstream boundary
condition is usually neglected by considering a semi-infinite channel (see e.g., Dooge et al.,
1987a) because it greatly simplifies the equations. This point may be questionable in the
context of dam release management which has generally to be done in low flow. In
such a context, the natural of artificial cross structures (weirs) may induce backwater
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and feedback effects. Munier et al. (2007) proposed a method to take these effects into
account in the transfer function. This transfer function is based on a simplification of the
water surface profile and the linearization of the Saint-Venant’s equations. The Laplace
transform of the equations leads to the transfer function in the Laplace domain. Coupled
with a cross structure discharge equation, one gets a transfer function taking account of
the backwater and feedback effects due to the cross structure.
The same framework is adopted here, since the transfer function can be easily calculated
based on a few characteristics of the river stretch: mean slope, mean discharge, mean river
width and roughness coefficient. When available, information about the cross structures
(usually weirs) can also be used.
The effect of a lateral inflow on the river dynamics has been studied by a few researchers.
The methods are generally based on the linearization of a transfer model (Saint-Venant
or a simplification) and the transfer function in the Laplace domain. Moussa (1996)
analyzed the effect of a uniform lateral inflow on the flow dynamics established from the
linearized diffusive wave equation. An extension of this study on the complete Saint-
Venant’s equations is proposed by Moramarco et al. (1999). More recently, Fan and Li
(2006) studied the influence of localized or uniformly distributed in a finite channel. The
main limitations of these approaches is the use of the convolution product to calculate
the transfer in the temporal domain, which is time-consuming and represent a limitation
in the context of real-time operation.
In this paper, we propose an approximation of the transfer functions of the lateral inflow
in the Laplace domain, which leads to first order plus delay transfer functions. These
functions lead to input delayed first-order differential equations in the time domain, which
are calculated more quickly than the convolution product.
Still, there are multiple manners to consider the inflow due to rain: this inflow can be
considered as uniformly distributed, distributed according to the drained area, considered
as punctual (case of a well identified tributary) or a combination of these methods. This
point is discussed in section 4 with an illustration on a 82km long stretch of the upper
Tarn River (South of France).

3 Theoretical framework

3.1 The Linear Lag-an-Route (LLR) transfer model

The transfer model is set to provide the discharge at any point in the channel with respect
to several localized lateral inflows. This section presents the methodology.

3.1.1 General methodology

We consider a semi-infinite rectangular channel with localized lateral inflows ql (see Fig.
1).
The full one-dimensional Saint-Venant equations are linearized around a reference uni-
form steady state regime. These equations are then rewritten in the Laplace domain,
which leads, under the considered assumptions, to one Saint-Venant transfer function per
lateral discharge linking the discharge at any point in the channel to the corresponding
lateral discharge. Because of the difficulty to inverse the obtained discharge back to the
time domain, the moment matching method is applied in order to simplify the transfer
functions. This method ensures a low frequency approximation, well adapted to the free
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Figure 1: General scheme of the considered channel.

surface transfer, and provides simplified transfer functions TFi of the form of a first order
plus delay (attenuation plus delay), corresponding in the time domain to a simple first
order ordinary differential equation.
The obtained model is referred to as LLR for linear lag-and-route model.

3.1.2 Linearized Saint-Venant equations

We consider a stationary regime and small variations around it. The stationary regime
(reference flow) is characterized by constant discharge Q0 and corresponding normal water
depth Y0 along the channel, and no lateral inflows.
The following notations are used: x (m) is the abscissa along the channel, B the chan-
nel width, Sb the bed slope and g the gravitational acceleration (ms−2). The following
variables represent the reference flow: A0 the wetted area (m2), P0 the wetted perimeter
(m), Q0 the discharge (m3/s) through section A0, Y0 the water depth (m), Sf0 the friction
slope, V0 = Q0/A0 the mean flow velocity (ms−1), T0 the top width (m), F0 = V0/C0 the
Froude number with C0 =

√

gA0/T0 the wave celerity (ms−1). Throughout the article,
the flow is assumed to be subcritical (i.e., F0 < 1).
The friction slope Sf0 is modeled using the Manning formula (see Chow, 1988):

Sf0 =
Q2

0n
2

A2
0R

4/3
0

(1)

with n the Manning coefficient (sm−1/3) and R0 the hydraulic radius (m), defined by
R0 = A0/P0.
Let us denote q(x, t), y(x, t) and ql(x, t) the variations in discharge, water depth and
lateral inflow at abscissa x and time t, compared to the reference steady state regime.
The linearized Saint-Venant equations are given by (see Litrico and Fromion (2004a) for
details):

T0
∂y

∂t
+

∂q

∂x
= ql (2)

∂q

∂t
+ 2V0

∂q

∂x
− µ0q +

(

C2
0 − V 2

0

)

T0
∂y

∂x
− ν0y = 0 (3)

where the dependency on x and t is omitted for readability.
In the general non-uniform case, parameters ν0 and µ0, which are functions of x, are
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defined by the following equations:

ν0 = V 2dT

dx
+ gT

[

(1 + κ)Sb − (1 + κ − (κ − 2)F 2)
dY

dx

]

(4)

µ0 = −
2g

V

(

Sb −
dY

dx

)

(5)

with κ = 7/3 − 4A/(3TP )(∂P/∂Y ).

The boundary conditions are given by the upstream discharge q(0, t) and the lateral inflow
denoted ql(x, t). The lateral inflow is considered as the sum of n lateral discharges qli(t)
localized at different longitudinal positions xli, i = 1 . . . n (Eq. 6). One may note that
the upstream discharge can be considered as a lateral discharge localized at the upstream
end of the channel (x = 0).

ql(x, t) =
n

∑

i=1

δ(x − xli)qli(t) (6)

where δ is the Dirac function.

3.1.3 Saint-Venant Transfer Function

Since the model is linear, the contribution of each lateral inflow qli can be computed
separately and finally added to obtain the discharge at any point in the channel.
The Saint-Venant equations are expressed in the frequency domain using the Laplace
transform. A time function expressed as f(t) in the time domain is expressed as f(s) in
the Laplace domain, where s is the Laplace variable. The transposition to the Laplace
domain allowed us to solve these equations analytically, leading to a closed-form expression
of Saint-Venant transfer functions TFi(x, s) corresponding to each lateral inflow. These
transfer functions lead to analytical expressions of the contribution qi(x, s) of the lateral
inflow qli(s) localized at xi to the discharge q(x, s) at any point in the channel.

q(x, s) =

n
∑

i=1

qi(x, s) (7)

qi(x, s) = TFi(x, s)qli(s), i = 1..n (8)

The Saint-Venant transfer function relative to one particular localized lateral inflow is
computed following the method developed in Munier et al. (2007). The Saint-Venant
transfer function TFi(x, s) at the relative distance x corresponding to the lateral inflow
qli(s) localized at xi, is given by Eq. (9).

TFi(x, s) =
(λ2 − 2bs)e−λ1xi − (λ1 − 2bs)e−λ2xi

λ2 − λ1

eλ1x (9)

where
λj = a + bs + (−1)j

√

(2ad + c2)s2 + 2acs + a2

and a = ν0

2T0(C2

0
−V 2

0
)
, b = V0

C2

0
−V 2

0

, c =
V0ν0−(C2

0
−V 2)Tµ0

ν0(C2

0
−V 2

0
)

, d = 1
2a

[

C2

0

(C2

0
−V 2

0
)2
− c2

]

.

Eq. (9) provides a linear distributed model for lateral inflow transfer in a semi-infinite
open-channel. This model is expressed analytically in the frequency domain by a tran-
scendental transfer function which depends on the pool characteristics.
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One may remark that the Hayami transfer model is a particular case of the one presented
here. Indeed the Hayami model is based on the diffusive wave equation, which is deduced
from the complete Saint-Venant equations by neglecting the inertia terms. This last

assumption leads to a simplified expression of the eigenvalues λ1 =
Ce−

√
C2

e
+4Des

2De

and

λ2 =
Ce+

√
C2

e
+4Des

2De

(Ce = −ν0/µ0T0 and De = −gA0/µ0T0) which correspond to the ones
of the Hayami model. Additionally, the transfer function corresponding to an upstream
inflow (xl = 0) is given by TF (x, s) = eλ1x. Consequently, the channel transfer model
presented here is an extension of the Hayami model allowing us to take the complete
Saint-Venant equations with localized lateral inflows into account.

3.1.4 Low frequency approximate transfer function

The method provides a simple expression of the discharge q(x, s) at any point in the
channel in the Laplace domain. To express it in the time domain (q(x, t)), one usually
uses the convolution operation. Then, Eqs. (7–8) can be represented by:

q(x, t) =
n

∑

i=1

TFi(x, t) ∗ qli(t) (10)

where f ∗ g represent the convolution of the two functions f and g, and is defined by
(f ∗ g)(t) =

∫ +∞

−∞
f(t − τ)g(τ)dτ . The convolution can be implemented numerically, but

its execution can be very time consuming.
Another possibility is to simplify the expression of the transfer function in the frequency
domain. It is well-known that the flow routing in a channel is a delayed process, and
that there is some attenuation of the peak flow. Such phenomenon can be accurately
described by a rational transfer function with delay. To enable analytical computations,
we restrict ourselves to a first order with delay model (Eq. (11)), as it is classically done
in the literature (Malaterre (1994); Rey (1990)). We show in the following that using
the classical moment matching method (see Dooge et al. (1987a); Rey (1990)), one may
identify the parameters of a first order with delay that matches the low order moments
of the full Saint-Venant transfer function given by Eq. 9.

˜TF i(x, s) =
Gi(x)e−τi(x)s

1 + Ki(x)s
(11)

The R-th cumulant (i.e., logarithmic moment) of a transfer function h is given by:

MR[h(x, t)] = (−1)R dR

dsR
[log h(x, s)]s=0 (12)

The purpose of the moment matching method is to match the cumulants of the exact
transfer function to those of the approximate one. Equating the first n cumulants of the
exact transfer function and the approximate one ensures a good representation for the
low frequency range.
Mi0(x), Mi1(x) and Mi2(x) denote the first three cumulants of the transfer function
TFi(x, s) given by Eq. (9), computed using the Taylor series expansion at s = 0. One
may note that Mi0(x) = 1, which is in agreement with the mass conservation law.
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Equating the first three cumulants of the approximate transfer function ˜TF i(x, s) to
Mi0(x), Mi1(x) and Mi2(x) leads to:











Gi(x) = 1

Ki(x) =
√

Mi2(x)

τi(x) = Mi1(x) −
√

Mi2(x)

(13)

One may note that other approximate models can be set with the present method, since it
simply requires to solve the system obtained by equating the first cumulants of the transfer
function and its approximation. In particular, adding a zero in the transfer function may
lead to a better approximation for short canals (see Litrico and Fromion (2004a)).
In any case, this method leads to analytical and distributed expressions of the model
parameters (τi, Ki, i = 1..n). These expressions provide a low frequency approximation
of the flow transfer. Parameters are obtained analytically as functions of the physical
parameters of the pool (geometry, friction, discharge). Since the approximate model
˜TF i(x, s) is a first order with delay, the contribution qi of lateral inflow qli to the discharge

at any point in the channel verifies the following ordinary differential equation:

Ki(x)
d

dt
qi(x, t) + qi(x, t) = qli(t − τi(x)) (14)

using a numerical scheme to solve this equation (e.g. with a Runge-Kutta algorithm) is
generally less time consuming than computing the convolution.

3.2 Rainfall-Runoff model

The GR4J model is a four parameters conceptual lumped rainfall-runoff model. Stream-
flows at the outlet of a catchment are calculated from rainfall and potential evapotran-
spiration (PE) time-series in seven steps: first, net rainfall Pn and potential evapotran-
spiration PEn are determined with a zero capacity interception store:

P ≥ PE ⇒ Pn = P − PE PEn = 0

P < PE ⇒ Pn = 0 PEn = E − P
(15)

Second, in the case where Pn is different from 0, a soil moisture accounting store (SMA)
is filled by a part Ps of the net rainfall determined by the following equation:

Ps =

X1

(

1 −
(

S
X1

)2
)

tanh
(

Pn

X1

)

1 + S
X1

tanh
(

Pn

X1

)

(16)

Where X1 is the capacity of the SMA store and S the water level in the same store. In
the case where Pn is null and En > 0, an evaporation rate Es is computed to evaporate
water from the SMA store with the following equation:

Es =
S

(

2 −
(

S
X1

))

tanh
(

En

X1

)

1 +
(

1 − S
X1

)

tanh
(

En

X1

) (17)
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Third, leakages from the SMA store is finally calculated to account for slow contributions
with the following equation:

Perc = S

{

1 −
[

1 +

(

4

9

S

X1

)]}

(18)

The water level in the SMA store is finally updated with all the preceeding terms: S =
S + Ps − Es − Perc.
Four, effective rainfall Pr is calculated as the remaining of the net rainfall after withdrawal
from SMA store and addition of percolation: Pr = Pn −Ps+Perc. This effective rainfall
is then partitioned into two components: 90% of Pr are routed by a unit hydrograph
UH1 and a non linear routing store as a slow component, 10% of Pr are routed with a
second unit hydrograph UH2 as a fast component. UH1 has a time base of X4, UH2 of
2 × X4. The reader is referred to Perrin et al. (2003) for the exact formulation of unit
hydrographs.
Five, an intercatchment groundwater flow function is computed to account for gain or
losses due to interactions with neighboring catchments or groundwater:

F = X2

(

R

X3

)7/2

(19)

Where R is the water level in the routing store, X3 the routing store capacity and X2 the
intercatchment groundwater flow parameter.
Six, the routing store water level is updated with the output from the UH1 hydrograph
QUH1 and the gain or losses term F if the balance is positive: R′ = max(0, R+QUH1−F ).
Output Qr from the routing reservoir is calculated by the following equation:

Qr = R

{

1 −
[

1 +

(

R

X3

)]4/3
}

(20)

Seven, the final discharge at the catchment outlet is calculated as the sum of routing
reservoir output Qr and the output of UH2 noted QUH2 minus the gain and losses term
applied on the fast component if the balance is positive:

Q = Qr + max(0, QUH2 + F ) (21)

Figure 2 present the overall model scheme. The interested reader is referred to Perrin
et al. (2003) for additional details. Finally, the four parameters to be calibrated are the
following:

1. X1, the capacity of the soil moisture store (in millimeters),

2. X2, the exchange parameter that controls the intercatchment groundwater flows (in
millimeters). Positive values traduce water imports from groundwater or neighbour-
ing catchments, negative values imply water exports,

3. X3, the capacity of the routing store (in millimeters),

4. X4, the time base of the unit hydrograph (in days). This parameter controls the
time lag between effective rainfall and runoff peaks.
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Figure 2: GR4J rainfall-runoff model scheme

3.3 Compact integrated model

At this stage, two sub-models have been computed: the first one, the lag-and-route model,
provides the downstream discharge from the upstream discharge and localized lateral
inflows, and the second one, the rainfall-runoff model, transforms the rainfall over a basin
into a discharge at its downstream end. These two sub-models are then coupled to get
the integrated model: the sub-basins of the main tributaries and the remaining sub-basin
are considered, the GR4J model takes the rainfall and potential evapotranspiration over
each sub-basin as inputs and computes the discharge at their downstream end; the LLR
model takes the upstream discharge and the outputs of the GR4J model as inputs and
computes the discharge at the downstream end of the reach. The integrated model is
then determined by eight parameters: four for the lag-and-route model and four for the
rainfall-runoff model.
Over-parametrization can occur when a model has too many degrees of freedom: many
different sets of parameters can provide similar responses to a given input. In order to
avoid this problem, we used the physical property of the lag-and-route model and reduced
the calibration exercise to the identification of GR4J parameters. Since the parameters of
this model are physically based, they can be estimated a priori. The reference discharge
Q0 is set to the mean value of the upstream discharge, the channel width B is set to the
average width of the river, the bed slope Sb can be deduced from the reach length and
the altitude of the upstream and downstream stations and the Manning coefficient n can
be determined from the characteristics of the river bed (see reference values in Chow,
1988). Then, the four parameters X1, X2, X3 and X4 of the rainfall-runoff model GR4J
are chosen to maximize the Nash-Sutcliffe coefficient NS on a first temporal period:
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NS = 1 −
∑N

i=1 (Qs(ti) − Qm(ti))
2

∑N
i=1

(

Qm(ti) − Qm

)2 (22)

where N is the number of time samples of the identification period, Qs(ti) and Qm(ti) the
simulated downstream discharge and the measured downstream discharge respectively, at
time ti, and Qm the mean measured values of the downstream discharge.
For validation, the obtained set of parameters is used to simulate the discharge on a
second period. The quality of the prediction is evaluated by the Nash-Sutcliffe coefficient
too.

4 Results and discussion on a case study

4.1 Presentation of the case study

The integrated model have been tested on the particular case of the upper Tarn basin.
The area of this basin if 946 km2. The considered reach is defined by two measurement
stations. The sub-basin relative to the upstream station is not considered, its area is
10 km2. The reach length is 82 km. The sub-basin between the upstream end and the
downstream end of the reach is called intermediate basin S0. The two main tributaries
are located at 23 km and 62 km, their relative sub-basins S1 and S2 have an area of 263
km2 and 119 km2 respectively. Fig. 3 shows a representation of the upper Tarn basin.

Configuration  “GR”

Only rainfall input 

Configuration  “GR+LR, 0 sub. bas.”

Rainfall on S0 and upstream 

discharge as inputs

Configuration  “GR+LR, 1 sub. bas.”

Rainfall on S0’, S1 and 

upstream discharge as inputs

Configuration  “GR+LR, 2 sub. bas.”

Rainfall on S0”, S1, S2 and 

upstream discharge as inputs

S0

S’0
S1

S1 S2
S”0

Figure 3: Representation of the upper Tarn basin.

10



Hourly rainfall and PE are available over the period from 01/01/96 to 31/12/04 in four
different spatial configurations:

• GR: Mean areal rainfall and PE (MAR&PE) are calculated on the overall catchment.

• GR+LR, 0 sub-basin: MAR&PE are calculated on the intermediate catchment S0

between the upstream and downstream stations.

• GR+LR, 1 sub-basin: MAR&PE are calculated on the catchment of the first trib-
utary S1 and on the remaining intermediate area S ′

0.

• GR+LR, 2 sub-basins: MAR&PE are calculated on the catchment of the first and
the second tributary S2 and on the remaining intermediate area S ′′

0 .

For the considered reach, the parameters of the LLR model are resumed in table 1.

Q0 B Sb n

0.554 m3/s 100 m 7.8 10−3 m/m 0.04

Table 1: LLR parameters for the considered reach.

In this study case, results of different models are compared. The first one is the GR4J
model without accounting for the routing from the upstream end to the downstream end
of the reach (classical lumped mode). The second one is the integrated model just with
the intermediate basin S0. The third one is the integrated model accounting for the sub-
basin S1, and the last one is the integrated model accounting for S1 and S2 (intermediate
area is then reduced to S ′

0 and S ′′

0 respectively).
The identification step is done on the period from 01/01/96 to 31/12/99, whereas the
validation step is done on the period from 01/01/01 to 31/12/04.

4.2 Parameter identification

The identification step is applied on the four models. Table 2 summarizes the sets of the
GR parameters that maximize the Nash-Sutcliffe criterion for each model.

GR GR+LR: 0 sub-basin GR+LR: 1 sub-basin GR+LR: 2 sub-basin

X1 306 304 380 350
X2 −0.16 0.058 −0.0031 0.083
X3 190 181 93.1 94.9
X4 15.2 18.3 22.3 20.0

Table 2: Parameter identification.

These parameters are classical values for GR4J.
One will note the evolution of the parameter set when introducing additional tributaries.
This traduces the strong impact of lateral inflow discretization on hydrological parameters.
For each model, the Nash-Sutcliffe criterion is reported in table 3. This criterion is better
when the rainfall-runoff model is applied on the whole intermediate basin S0 and the
upstream discharge is routed through the river reach using the LLR model. The criterion
decreases when accounting for one or two sub-basins.
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GR GR+LR: 0 sub-basin GR+LR: 1 sub-basin GR+LR: 2 sub-basin

86.2% 87.8% 84.0% 83.7%

Table 3: Nash-Sutcliffe criterion for the identification step.

Fig. 4 shows the downstream discharge simulated Qd by the GR4J model applied alone
and by the integrated model without any sub-basin compared to the measured downstream
discharge. This graph shows that the three discharges are very close (the Nash-Sutcliffe
criterion is 86.2% for the GR model and 87.8% for the integrated model).

Nash GR = 86.2 %

Nash GR+LR = 87.8 %
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Figure 4: Identification step. Discharge at the downstream end of the channel (on the whole
identification period and zoom): (− −) measurements, (· · · ) GR simulation, (−−) GR+LR
simulation without any sub-basin.

4.3 Validation step

The four models are then validated on a four years period, from 01/01/01 to 31/12/04.
Table 4 summarizes the Nash-Sutcliffe criterion for each model on the validation period.

GR GR+LR: 0 sub-basin GR+LR: 1 sub-basin GR+LR: 2 sub-basin

75.2% 77.9% 82.7% 82.2%

Table 4: Nash-Sutcliffe criterion for the validation step.

The table shows that, firstly, accounting for the routing of the upstream discharge through
the river reach in the transformation of the rainfalls into the discharge at the downstream
end of the basin, improves the reconstitution of the downstream discharge. Secondly,
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taking the sub-basin relative to the main tributary into account also improves the recon-
stitution. However, taking the sub-basin relative to the second tributary does not increase
the Nash-Sutcliffe criterion.
Fig. 5 shows the downstream discharge simulated by the GR model and by the integrated
model without any sub-basin, compared to the measured downstream discharge. Fig. 6
shows the same graph, but the integrated model takes one sub-basin into account.
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Nash GR+LR = 77.9 %
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Figure 5: Validation step. Discharge at the downstream end of the channel (on the whole
validation period and zoom): (− −) measurements, (· · · ) GR simulation, (−−) GR+LR
simulation without any sub-basin.

4.4 Discussion

In the identification process, the performance of the model is quite similar between the
different configurations: the quality of the prediction is almost unsensitive to the model
structure. However, the validation step clearly shows an improvement when considering
the upstream discharge in the downstream discharge prediction, even though the upstream
basin is very small compared to the whole basin. This means that the upstream discharge
brings an important contribution to the predicted discharge. When considering one sub-
basin, the Nash-Sutcliffe coefficient improves by 7.5% compared to the lumped model.
Adding more sub-basins does not necessarily improve the prediction, as we can see from
table 4. There may be many reasons why the performance is not improved with more
sub-basins, such as uncertainties in data and model, but the results suggest that the key
factors are not in the flow routing process.
It is clear too that the method of identification favors the reconstitution of the rainy
events, and the low flows seem to be rather poorly simulated (Fig. 5 and 6). Different
error coefficients may be used, according to the relative importance of the low flows and
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Figure 6: Validation step. Discharge at the downstream end of the channel (on the whole
validation period and zoom): (− −) measurements, (· · · ) GR simulation, (−−) GR+LR
simulation with one sub-basin.

high flows. For instance, a Nash-Sutcliffe coefficient calculated on the logarithm of the
discharge gives the same weight to the relative error (Qs −Qm)/Qm, whether in high flow
or in low flow.

5 Conclusion

This paper proposed a new theoretical framework to take account of the lateral discharge
in the flow routing process. The transfer functions are obtained in a closed form in
the Laplace domain. A first-order approximate model leads to an ordinary differential
equation in the time domain, which gives a quick computation method for the flow routing
model.
The method allows to evaluate the response of a watershed with known upstream dis-
charge, rainfall and potential evapotranspiration. The lateral discharge is modeled by a
four-parameter lumped rainfall-runoff model. The flow routing model can be parameter-
ized with four physical parameters: mean discharge, mean slope, river width and Manning
roughness coefficient. Therefore, the coupled model requires the calibration of only four
parameters.
An illustration of the model is presented on the upper Tarn River. The contribution
due to rainfalls can be integrated by considering different sub-basins. The example also
shows that it is not always useful to consider a large number of sub-basins to improve the
model performance at the downstream end of the watershed, but that the knowledge of
the upstream discharge brings a lot of information even if the corresponding basin area is
small compared to the whole basin.
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For dam release management, it is essential to correctly represent the flow routing process
at low discharge too. In these conditions, backwater and feedback effects due to cross
devices may have a significant effect on the flow dynamics. The same theoretical approach
can be developed accordingly, using for example an approximate determination of the
water surface profile (Munier et al., 2007). It may be necessary to have a good estimate
of the water withdrawals also. These withdrawals can be integrated the same way as the
rainfall contributions, either as punctual or as distributed withdrawals.
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