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Abstract

The properties of a pricing rule, applied in an irrigation area in France,
and of some of its derivatives, are studied through a formalized model,
considering the Nash equilibria in a deterministic and in a stochastic en-
vironment. We show that when we add some freedom degrees in the pricing
system, it is possible to limit the use of water for irrigation in temper-
ate countries, to anticipate possible usage conflicts, to give assurance of
budgetary equilibrium for the water user association, to incite the farm-
ers to utilize less water, and to use the water in productions where its
valorization is at its best. This method can be translated in tarification
rules which can be made easy to understand, and econometric results show
that the farmers reaction is conformable to what is expected, showing in
passing the acceptability of this pricing rule.

JEL-Classification: C61, C72, Q25
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1 Introduction

Irrigation is one of the principal water uses in temperate countries, as in
France. Limiting some consumption of this natural resource by the agricul-
tural sector is therefore one of the more undisputed environmental problems.
Moreover a better use of the water resource by farmers is now an explicit aim of
the French Agriculture Ministry. Sharing a limited resource in order to optimize
its use may be done using different tools (Perry, 2001), but it is all the more
complicated in France where the resource legally does not belong to anybody. A
lot of tools have been long documented in the literature, and sometime used, too
much often without much success. But once recognized that ”Water has an eco-
nomic value in all its competing uses and should be recognized as an economic
good” (Dublin declaration, 1992), the progresses in different fields of economic
science may be used to diminish water “wastes” (Briscoe, 1996, Savenije et van
der Zaag, 2002).

Among them, water pricing tools, which are rather commonly used, are also
well documented (Johansson, 2000, Roth, 2001, Groom et al., 2006). Their
objectives are multiple, well established, and sometimes contradictory: alloc-
ating water to users who valorise it at the best, guaranteeing an access to
this essential good to everybody, recovering costs induced by water extrac-
tion/distribution/use, guaranteeing financial stability to providers, being trans-
parent and simple enough to be understandable, being “acceptable” to be ap-
plied, etc. (Tsur et Dinar, 1995, Tsur, 1998).

The economists are interested essentially in the first four ones that corres-
pond to efficiency, equity and cost recovery objectives (Carlson et al., 1993,
Zilberman et Lipper, 1997). Here we present an original water pricing device,
constructed through ‘mechanism design’, i.e. by using game theory models in or-
der that the pricing system is able to meet the preceding five objectives (includ-
ing then intelligibility by water users). We show how introducing some degree
of freedom in the system, and using the fact that farmers will keep secret some
private information and acquire public information in the course of the plant
growth period, may allow the manager of the irrigation area and the farmers to
meet these objectives in an acceptable way. Some field data, analysed through
econometric tools, confirm this possibility, and the acceptability of such pricing
mechanism.

The paper is divided in several sections: firstly we describe the pricing for-
mula, which is a function of water subscription and consumption by each farmer.
Secondly, we study the properties of this pricing formula in a deterministic con-
text, when we have either one single farmer, numerous farmers, or finally two
farmers. In this last case we determine the Nash equilibrium between them, when
they are approximatly similar in their water consumption, or when they are suf-
ficiently different. Then we study the properties of the system, and especially
the possible Nash equilibria, in a stochastic environment. The acceptability of
such a pricing rule is established elsewhere through an econometric analysis of
real data coming from an irrigation area.
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2 Modelization

2.1 Notations

We suppose here that a water user association, composed of N farmers, provides
them irrigation water coming from a dam of a limited volume. Each farmer,
consuming the quantity Ci has in the deterministic case a production function
that we note hi(Ci), a function known only by himself and not by the other
farmers nor by the association manager. In the stochastic case some rain π adds
to the water consumption, but the function hi := hi(Ci+π) is unchanged. Each
farmer’s objective is to maximize the production function less the water bill.
The association manager’s objective is to present an equilibrated budget, and
calling D the total value of the association expenses a given year, the sum of
the bills paid by the farmers for the same period must equal this amount.

Each year, an agent firstly reserves a water volume Si, then consume another
volume Ci, either inferior or superior to Si. The pricing formula is designed in
order to fulfill the different objectives or constraints presented before.

The notation we use are the following:

• D is the total water user association expenses,

• N is the number of agents

• Si is the volume reserved by agent i and S−i the sum of the volumes
reserved by the others agents,

• Ci is the volume consumed by agent i and C−i the sum of the volumes
consumed by the others agents,

• S =∑N
i=1 Si and C =

∑N
i=1Ci

• Fi is the sum agent i must pay (the water bill).

Consider Ci given for all i. For each agent i, the pricing formula is:

Fi(Si, S−i) =
1

2
D

(
Si
S
+
[max(Ci, 0.7Si)]

2

C Si

)

, (1)

The pricing scheme is common knowledge for all agents. We will examine
some changes of this pricing rule throughout this article.

2.2 Properties of the pricing formula

If Ci is given, the objective of i is to minimize:

Fi(Si, S−i) =






1
2D

(
Si

Si+S−i
+ (Ci)

2

C Si

)
if 0.7Si ≤ Ci,

1
2DSi

(
1

Si+S−i
+ 0.49

C

)
if 0.7Si > Ci.

We can deduce the following properties of this pricing scheme:
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• Fi(Si, S−i) is a continuous function.

•

∂Fi(Si, S−i)

∂Si
=






1
2D

(
S−i

(Si+S−i)2
− (Ci)

2

C (Si)2

)
if 0.7Si < Ci,

1
2D

(
S−i

(Si+S−i)2
+ 0.49

C

)
if 0.7Si > Ci.

and it is not defined in 0.7Si = Ci.

2.2.1 Case of one single farmer

In the theoretical case of one single farmer (or in other words, in the case where
C−i = S−i = 0), then

F =






1
2D

(
1 + Ci

Si

)
if 0.7Si ≤ Ci

1
2D

(
1 + 0.49 Si

Ci

)
if 0.7Si > Ci

We see immediatly that it is possible we have a budget equilibrium, but that
it is not a necessity. The bill to pay is at its minimum when Ci = 0.7Si. This
is a limit case showing that when the consumptions and subscriptions of others
faint to zero, the pricing method does not garantee a budget equilibrium.

2.2.2 Case of numerous farmers

We suppose here that there are numerous farmers, and that the actions of
farmer i has no impact on the actions of the other farmers. Moreover we suppose
that

Si << S−i, with S−i =
∑

j �=i
Sj

and Ci << C−iwith C−i =
∑

j �=i
Cj

For S−i , C and Ci given,

• if
0.7S−i <

√
S−i C −Ci (2)

then the minimization of (1) is given by:

∂Fi(Si, S−i)

∂Si
= 0 ⇐⇒ Si =

S−i Ci√
S−i C −Ci

.

• if not the minimum of (1) is attained in

0.7Si = Ci.
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Notice that in the case where (2) is verified Si < Ci/0.7.

In summary we have always 0.7Si ≤ Ci.

As in this case Fi(Si, S−i) =
1
2D

(
Si
S
+ CiCi

CSi

)
, if all agents have the same

behavior or make the same choice, the budget equilibrium is not garanteed if
0.7Si ≤ Ci ≤ Si. In this case, only 85% of the revenues is garanteed. But
in fact we may have strategic interactions between farmers. We examine these
interactions in the following section, always in the deterministic case, and when
there are only two farmers.

2.3 The Nash equilibrium in the deterministic case

2.3.1 Nash equilibrium in the case of two farmers

Now, we are going to compute the Nash equilibrium in consumption Ci and
subscriptions Si, taking into account that consumption is chosen after the sub-
scription decision is done. We consider the simplier case N = 2. The problem
is:

max
Si

[
max
Ci

Gi(S1, S2, C1, C2)

]
, (3)

where
Gi(S1, S2, C1, C2) = hi(Ci)− Fi(S1, S2, C1, C2),

and hi(.) is an increasing concave fonction of Ci.

2.3.2 The symmetric case

We consider first the case where hi = h for i = 1, 2.
For S1, S2 given we compute:

max
Ci

Gi(S1, S2, C1, C2). (4)

First order condition gives:

h′(Ci) =
D

2

C2i + 2CiCj
(C1 +C2)2Si

if 0.7Si < Ci,

h′(Ci) = −
D

2

0.49

(C1 +C2)2Si
if 0.7Si > Ci.

As h is an increasing function (h′ > 0) there is no solution of the first order equa-
tion when 0.7Si > Ci. As h is a concave function (h

′ is a decreasing function)

and D
2
C2

i+2CiCj
(C1+C2)2Si

is an increasing function in Ci there exist a unique solution

of the first order condition when 0.7Si < Ci. Moreover, as here we consider
h1 = h2 = h we obtain that C1 = C2 = C̄. So we can rewrite the first condtion
as

h′(C̄) =
3D

8Si
(5)
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So, problem (4) has two possible solutions, Ci(Si, Cj) solution of the first or-
der condition (5) or Ci = 0.7Si. These two posible solutions verify

∂Ci
∂Si

> 0

and ∂Ci
∂Cj

≥ 0.
We analyse now, the two differents possibilities (we consider only symmetric
solutions because we deal with a symmetric problem):

i) Ci = 0.7Si, i = 1, 2. We compute

max
Si
[h(0.7Si)− Fi(S1, S2, 0.7S1, 0.7S2)] .

The first order condition gives: S1 = S2 = S̄ and h
′(0.7S̄) = 17D

56S̄
.

ii) Ci = C(Si) > 0.7Si (solution of (5)) , i = 1, 2. When solving

max
Si
[h(Ci(Si))− Fi(S1, S2, C(S1), C(S2))] .

we obtain that the optimal solution verifies S1 = S2 = S̄ = 2C̄ that is in
contradiction with the fact that Ci = C(Si) > 0.7Si.

We can conclude that in the symmetric case the optimal solution of (3) is
for i = 1, 2

C̄ = 0.7S̄, where h′(0.7S̄) =
17D

56S̄
(6)

2.3.3 The non symmetric case

We suppose here that the two farmers are not the same. They are supposed to
have different production functions of the form hi(Ci) = αiln(1 + Ci). Here it
is no more possible to derive an analytical solution. So in order to solve this
game, we consider that the farmers have two possibilities when choosing their
strategies Si: either Si = Ci or Si = Ci/0.7, i = 1, 2. We also consider α1 = 1,
α2 = 2, D = 1. When solving the problem (4), for the differents values of Si,
we obtain:

• For Si = Ci/0.7, i = 1, 2,
S∗1 = 0.3177, S∗2 = 0.1429,

G1(S
∗
1 , S

∗
2 , C

∗
1 , C

∗
2 ) = −0.3854, W2(S

∗
1 , S

∗
2 , C

∗
1 , C

∗
2 ) = −0.0730

• For Si = Ci, i = 1, 2,
S∗1 = 0.2224, S∗2 = 0.1001,

G1(S
∗
1 , S

∗
2 , C

∗
1 , C

∗
2 ) = −0.3854, W2(S

∗
1 , S

∗
2 , C

∗
1 , C

∗
2 ) = −0.0730

• For S1 = C1, S2 = C2/0.7,
S∗1 = 0.2529, S∗2 = 0.1603,

G1(S
∗
1 , S

∗
2 , C

∗
1 , C

∗
2 ) = −0.2947, W2(S

∗
1 , S

∗
2 , C

∗
1 , C

∗
2 ) = −0.0324

• For S2 = C2, S1 = C1/0.7,
S∗1 = 0.2644, S∗2 = 0.0847,

G1(S
∗
1 , S

∗
2 , C

∗
1 , C

∗
2 ) = −0.4739, W2(S

∗
1 , S

∗
2 , C

∗
1 , C

∗
2 ) = −0.0436.

It is then easy to verify that the Nash equilibrium for the game in Si is given
by 0.7S1 = C1, S2 = C2.
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2.4 The Nash equilibrium in the stochastic case

We examine here the stochastic case. We suppose that the only stochastic part
is the level of rain for the considered geographic area, and that this level is
homogeneous for all farmers’ fields.

We use here the initial pricing formula (equation 1 ). We suppose here that
there are only two farmers, i = 1, 2 and that they interact and place themselves
in a Nash equilibrium.

2.4.1 Definition of the risk

In this section, we suppose that the risk at the date of subscrition is only due
to the intensity of the rain which we note π, a stochastic value. For the simplest
approach, π may be either low (π = π1) with probability p or high (π = π2 >
π1) with probability 1 − p. Neither farmer has a better information than his
concurrent on this intensity at the date of subscription. Then, at the date of
consumption, in the case of a high level of rain, the consumption of water is
chosen while Si is given and π is known.

The production function due to the consumption of the irrigation water Ci
is then h(Ci + π).

In the following preamble we show that it is possible that the level of rain
π1 and π2 may be such that when π = π1, the water consumption Ci is above
0.7Si, and when π = π2, Ci = 0.7Si.

2.4.2 Preliminary result

As in the deterministic case, the farmers find first the Nash equilibrium in Si
as a function of Ci ; they compute afterwards the Nash equilibrium in Ci. The
objective of i may be written as:

Max
Ci,Si

E [h(Ci + π)− F (Ci, Si)]

a/ If π2 is sufficiently high, an increase of Ci above 0.7Si will increase the
water bill more than it will increase the agricultural revenue. It will be the case
if

dh(Ci + π2)

dCi

∣∣∣∣
Ci=0.7Si

≤ dF (Ci, Si)

dCi

∣∣∣∣
Ci=0.7Si

which is equivalent to:

dh(Ci + π2)

dCi

∣∣∣∣
Ci=0.7Si

≤ 1

2
D
0.49S2i + 1.4SiC−i

(0.7Si +C−i)
2
Si

However low the value of the right hand term, the left hand term is decreasing
in π2 and can be made lower. This condition is then satisfied, and therefore
Ci ≤ 0.7Si. As a consumption of at least 0.7Si minimizes the bill when Ci ≤
0.7Si, then Ci = 0.7Si.
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b/ If π1 is sufficiently low, an increase of Ci above 0.7Si will increase the
agricultural revenue more than it will increase the agricultural harvest. It will
be the case if

dh(Ci + π1)

dCi

∣∣∣∣
Ci=0.7Si

>
dF (Ci, Si)

dCi

∣∣∣∣
Ci=0.7Si

which is equivalent to:

dh(Ci + π1)

dCi

∣∣∣∣
Ci=0.7Si

>
1

2
D
0.49S2i + 1.4SiC−i

(0.7Si +C−i)
2
Si
.

It is difficult to continue without solving the general problem of i, which is done
hereafter only. We recall that Ci ≥ 0.7Si, since consuming less would decrease
the production without decreasing the water bill. The fact that Ci > 0.7Si is
due to the fact that in computing Si we take into account the possibility of a
rainy season. So Si is less than it would be if we have known that the season
would be dry. Therefore the interest to consume more than 0.7Si.

2.4.3 The stochastic model

The problem for i is then to choose a level of Si, so that he maximizes its
expectancy of gain at the time of consumption, with this level fixed. It is the
same problem for j �= i. We suppose that in the case of drought, the agency is
able to provide at least 0.7Si for each farmer i.

We suppose here that the level of rain π1 and π2 are such that the preliminary
results are verified for agent i. Moreover we take into account here the possibility
to take advantage of the information acquisition between the subscription and
the consumption and water: We anticipate here the fact that at the time of
deciding the consumption, we will know the level of rain. So we do not compute
at the time of subscription an optimal level of consumption by maximizing a gain
expectancy depending on this last, but we optimize the level of subscription,
knowing that at the time of consumption the level of rain will be common
knowledge. Notice that the difference between the two optimal values of the
agricultural benefits we may compute according these methods is the quasi-
option value (Henry, 1974).

We suppose hereafter that the rain level is such that for the two farmers
the preliminary results are satisfied. The objective of farmer i is, at the time of
subscription:

Max
Si,Ci





p
[
h (Ci + π1)− 1

2D
(

Si
Si+S−i

+ C2

i

(Ci+C−i)Si

)]
+

(1− p)
[
h (0.7Si + π2)− 1

2D
(

Si
Si+S−i

+ (0.7Si)
2

(Ci+C−i)Si

)]






i.e.:

Max
Si,Ci





−1
2D

Si
Si+S−i

+ p
[
h (Ci + π1)− 1

2D
C2

i

(Ci+C−i)Si

]
+

(1− p)
[
h (0.7Si + π2)− 1

2D
0.49Si

(0.7Si+C−i)

]
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We show here that the subscription of water is under that it would have
been, having we not taken into account the possibility of a rainy season.

Moreover, we show here that a modification of the anticipation on the rain
or drought periods, modelized here by a change in the probability p, leads to a
change in the reserved volume of water: an increase in p leads to an increase in
Si.

2.4.4 Example 1: h(x) = ln(1 + x) for both farmers (symmetric case)

Consider the case where the farmers have the same production function, called
here the symmetric case. This function is supposed to be expressed as h(x) =
ln(1+x). As the farmers have an identical profit function, we can anticipate that
both are going to consume Ci = 0.7Si when π2 is high enough (rainy season).
We consider D = 1 without lost of generalization. First we compute the Nash
equilibrium in Ci, for Si given when the season is dry. In this case, knowing that
Ci ≥ 0.7Si each farmer solves:

max
Ci

{
ln(Ci + 1+ π1)−

1

2

(
Si

S1 + S2
+

C2i
(C1 +C2)Si

)}
.

Taking into account the fact that the farmers have the same production
function and that in consequence optimal values of Si are going to be equals,
we can conclude that the Nash equilibrium is given by:

C∗i =
8

3
Si − 1− π1

We can now compute the Nash equilibrium for Si. Each farmer must solve:

maxSi

{
p
[
ln( 83Si)− 1

2

(
Si

S1+S2
+

( 8
3
Si−1−π1)2

( 8
3
(S1+S2)−2−2π1)Si

)]
+

(1− p)
[
ln(0.7Si + 1 + π2)− 1

2

(
Si

S1+S2
+ 0.7Si

S1+S2

)]}
.

Then the symmetric Nash equilibrium S∗i = S
∗, i = 1, 2, is given by the only

positive solution of the equation:

(413p−1323)S2+510(π2+1)+p(410π1−1810π2−1390)S+600(π1+π2+π1π2+1) = 0

We can verify that the two solutions of this last equation are of different
signs because (413p− 1323)600(π1 + π2 + π1π2 + 1) > 0.
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2.4.5 Example 2: h(x) = αiln(1 + x) ( non symmetric case)

We suppose here that the two farmers are not the same. They are supposed
to have different production functions (asymmetric case). Here it is no more
possible to derive an analytical solution. So in order to solve this game, we
consider that the farmers have two possibilities when choosing their strategies
Si: we consider that either Si = Ci or Si = Ci/0.7, i = 1, 2.

For, p = 0.5, π1 = 0, π2 = 1, α1 = 1, α2 = 2 we find the following Nash
equilibrium in Ci when maximazing

Wi(S1, S2, Cj) := maxCi

{
p
[
αiln(Ci + 1 + π1)− 1

2

(
Si

S1+S2
+ C2

i

(C1+C2)Si

)]
+

(1− p)
[
αiln(0.7Si + 1 + π2)− 1

2

(
Si

S1+S2
+ 0.7Si

S1+S2

)]}
.

• For Si = Ci, i = 1, 2,

C∗1 = 0.3775, C∗2 = 0.1642,

W1(C
∗
1 , C

∗
2 , C

∗
2 ) = −0.0758, W2(C

∗
1 , C

∗
2 , C

∗
1 ) = 0.6207

• For Si = Ci/0.7, i = 1, 2,

C∗1 = 0.3013, C∗2 = 0.1342,

W1(C
∗
1 , C

∗
2 , C

∗
2 ) = −0.0396, W2(C

∗
1 , C

∗
2 , C

∗
1 ) = 0.6221

• For S1 = C1, S2 = C2/0.7,

C∗1 = 0.3863, C∗2 = 0.1368,

W1(C
∗
1 , C

∗
2 , C

∗
2 ) = −0.0595, W2(C

∗
1 , C

∗
2 , C

∗
1 ) = 0.6150

• For S2 = C2, S1 = C1/0.7,

C∗1 = 0.2917, C∗2 = 0.6202,

W1(C
∗
1 , C

∗
2 , C

∗
2 ) = −0.0552, W2(C

∗
1 , C

∗
2 , C

∗
1 ) = 0.6202

It is then easy to verify that the Nash equilibrium for the game in Si is given
by Si = Ci/0.7, i = 1, 2.

Moreover we can analyse the sensitivity of the Nash equilibrium with respect
to π2. We can see that when π2 = 3 we obtain

W1(C∗1 , C
∗
2 , C

∗
2 ) = 0.2676, W2(C∗1 , C

∗
2 , C

∗
1 ) = 1.3200.

W1(C
∗
1/0.7, C

∗
2/0.7, C

∗
2 ) = 0.3048, W2(C

∗
1/0.7, C

∗
2/0.7, C

∗
1 ) = 1.320007.

W1(C
∗
1 , C

∗
2/0.7, C

∗
2 ) = 0.2948, W2(C

∗
1 , C

∗
2/0.7, C

∗
1 ) = 1.31008.

W1(C
∗
1/0.7, C

∗
2 , C

∗
2 ) = 0.2795, W2(C

∗
1/0.7, C

∗
2 , C

∗
1 ) = 1.3223
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π2 C1 C2
1 0.3012919717 0.1342213499
3 0.3559692883 0.1867945056
5 0.3865372361 0.1962048460
7 0.4045336441 0.2010852601
9 0.4164148585 0.2040306979
11 0.4248514779 0.2059859585
13 0.4311539831 0.2073717730
15 0.4360420808 0.2084020650
17 0.4399442555 0.2091964164
19 0.4431316626 0.2098266186
21 0.4457843149 0.2103382442
23 0.5608860132 0.2214480304
25 0.5630919585 0.2219673495
27 0.5650016293 0.2224133095

Table 1: Ci(π2), i = 1, 2

It is easy to verify that the Nash equilibrium for the game in Si is given by
S2 = C2, S1 = C1/0.7.

And when π2 = 23, we get:

W1(C∗1 , C
∗
2 , C

∗
2 ) = 1.156598, W2(C∗1 , C

∗
2 , C

∗
1 ) = 3.12269

W1(C
∗
1/0.7, C

∗
2/0.7, C

∗
2 ) = 1.1946, W2(C

∗
1/0.7, C

∗
2/0.7, C

∗
1 ) = 3.12266

W1(C
∗
1 , C

∗
2/0.7, C

∗
2 ) = 1.1988, W2(C

∗
1 , C

∗
2/0.7, C

∗
1 ) = 3.1092

W1(C∗1/0.7, C
∗
2 , C

∗
2 ) = 1.156571, W2(C∗1/0.7, C

∗
2 , C

∗
1 ) = 3.1282

It is easy to verify that the Nash equilibrium for the game in Si is now given by
Si = Ci, i = 1, 2.

The optimal solutions in Ci as a function of π2 are given in table 1.

We see here that the value of the objective is increasing with the amount of
rain, as expected. But what is more interesting is that the nature of the Nash
equilibrium (Si = Ci or Si = Ci/0.7) changes with the level of rain. When the
climate is more rainy (i.e. when the value of π2 increases, compared to the value
of π1), the farmers are all the more incited to subscribed to a volume equal to
their consumption (Si = Ci), and not superior to this value (Si = Ci/0.7). The
farmer for which a higher amount (of agricultural goods...) is at stake will be
the first to change is subscription volume in this Nash equilibrium, when the
level of rain increases.
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a S1 S2
0.7 0.4304 0.1917
0.8 0.4093 0.1809
0.9 0.3919 0.1718
1 0.3775 0.1642
1.1 0.3653 0.1575
1.2 0.3549 0.1518
1.3 0.3460 0.1468
1.4 0.3383 0.1423
1.5 0.3316 0.1384

Table 2: Si(a), i = 1, 2

2.4.6 Example 3: h(x) = αiln(1 + x) (non symmetric case) whith Ci =
aSi in the dry season

The consumptions are constrained here by the rule that Ci = aSi, when the
climate is dry, with a > 0.7.

In this situation we only need to compute the Nash equilibrium in Si. Each
agent must solve:

maxSi

{
p
[
αiln(aSi + 1 + π1)− 1

2

(
Si

S1+S2
+ aSi

S1+S2

)]
+

(1− p)
[
αiln(0.7Si + 1 + π2)− 1

2

(
Si

S1+S2
+ 0.7Si

S1+S2

)]}
.

For, p = 0.5, π1 = 0, π2 = 1, a = 0.9, α1 = 1 we find the following Nash
equilibrium:

α2 = 1, S1 = 0.4865, S2 = 0.4865

α2 = 2, S1 = 0.3920, S2 = 0.1719

α2 = 3, S1 = 0.3074, S2 = 0.0892

α2 = 4, S1 = 0.2519, S2 = 0.0554

Now we consider p = 0.5, π1 = 0, π2 = 1, α1 = 1 and α2 = 2 and we
compute optimal solutions for differents values of a, see table 2.

The interpretation is the following: When the part of the water subscribed
increases in case of drought, the farmers are incited to subscribe less water when
there is uncertainty on the climate.
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3 Acceptability

The acceptability of such a pricing system was tested empirically in a French
irrigated area. The study of the subscriptions and consumptions of water by
the farmers show that firstly they understood well the pricing principles, and
secondly that they responded differently according to their culture types. Their
response is presented elsewere (Terreaux, 2007) and show that those who would
most suffer from a lack of water were reserving a more important water quantity.

4 Comments and conclusion

This pricing system is very interesting since, at the cost of some theoretical
analysis, we have shown that it allows the obtainment of some qualities of the
water sharing and of the budget equilibrium for the water user association. The
study of the properties of such a system is not finished at the present time,
but it opens new perspectives in water management, not only in France but for
example in Israel, where not only the water quantity is problematic, but the
water quality too. Some developments of our model are planed.
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7 Annex

0 < 0.3√
0.7

√
x+ x2 + 1− 2x 3

2 = 0.358 57
√
x
√
(1.0 + x) + 1.0− 2.0x 3

2 ,

Solution is: {0 ≤ x, x < 0.799 65}
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