

Enhancing Regional Capacities for the Isotope Based Assessment of Water Resources in the Context of Adapting to Climate Change

A Technical Cooperation Example

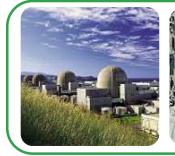
Mr Christoph Henrich Programme Management Officer Division for Europe Department of Technical Cooperation

O. Kracht, Y. Vystavna, S. Lipenkova, I. Bakiri, K. Meliksetian, F. Skopljak, B. Jolovic, M. Ivanov, T. Markovich, Z. Kovac., C. Christofi, T. Meador, R. Vaikmäe, G. Melidkadze, I. Fórizs, L. Palcsu, R. Aktayev, A. Kalvans, O. Bogdevich, D. Radojević, T. Milivojević, P. Wachniew, P. Mimo Carreira Paquete, A. Persoiu, V. Mocanu, B. Chubarenko, S. Sokratov, N. Todorovic, R. Cernak, P. Malik, N. Rman, U. Pavlic, P. Vreca, A. Kodirov, F. Simsek, M Ekmekci, Y. Nabyvanets, D. Turgunov

Main Areas of Work

The IAEA and Climate Change

Rafael Mariano Grossi Director General IAEA Coming to COP 25 just one week after taking office "reflects the importance of the issue and my firm belief that nuclear science and technology have an important role to play in helping the world to address the climate emergency"


TC programme topic areas

Energy

Safety

Health & Nutrition

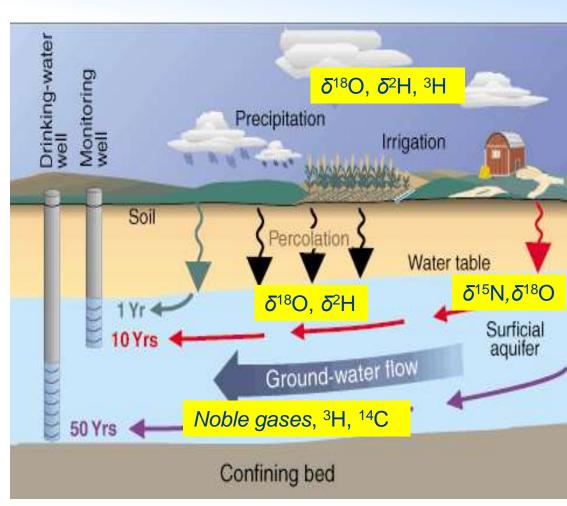
Radiation Technology

Knowledge Management

Problem Statement for Project RER/7/013

- The <u>better understanding</u> of complex aquifer systems and groundwater-surface-water interactions is indispensable for effective integrated water management
- Isotope hydrology is an excellent tool for characterizing and understanding aquifer systems
- Proficiency in isotope-based techniques and <u>capacity</u> to apply them <u>differs significantly</u> among countries

Why Isotope Hydrology


Isotopes are used as **powerful tracers** or **fingerprints** of:

- Source and movement of water
- Climatic conditions (climate change studies)
- Geochemical and hydrological processes

- Dynamics of hydrological processes (groundwater ages)

Isotope Hydrology

- allows for a **rapid understanding** of the hydrological system that may otherwise require years or decades of monitoring
- in some cases provides a nearly unique tool (e.g. age dating, recharge rates in arid areas)
- is cost-effective

Technical Cooperation Project RER/7/013

Title: Evaluating Groundwater Resources and Groundwater-Surface-Water Interactions in the Context of Adapting to Climate Change

Objective: To enhance evidence-based decision making in support of SDG target 6.5 "By 2030, implement integrated water resources management at all levels, including through transboundary cooperation as appropriate".

Project Duration: 2020-2023

Project Counterparts: 27 Countries from 38 institutions

Project Budget:

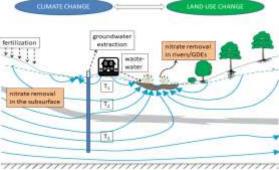
Funded:	866,580
Not funded:	793,500
Total:	1,660,080

Planned Outcomes

Increased awareness on the existence of isotope techniques

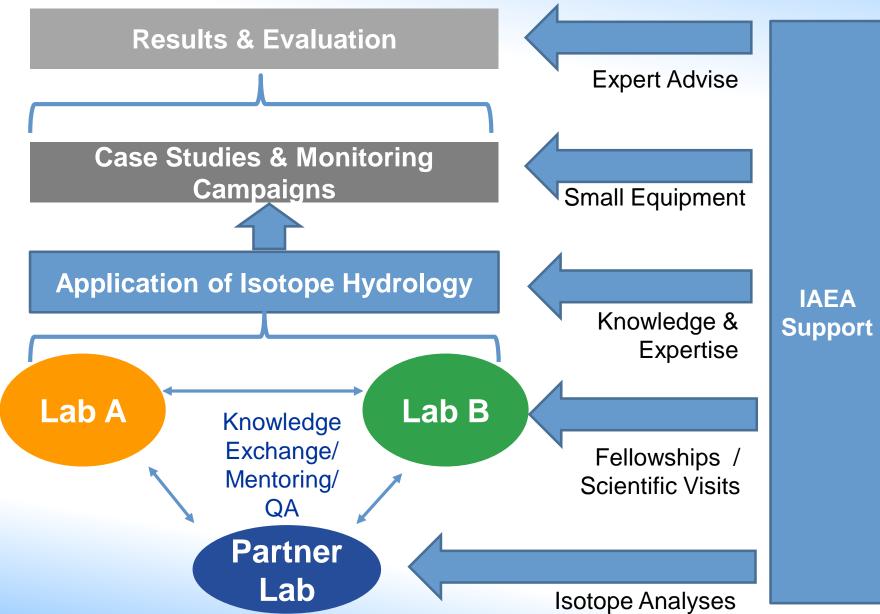
Transferred knowledge and build capacity on the use of isotope hydrology techniques

- Specific sub-regional and transboundary questions answered
- Regional monitoring network enhanced and
 Sustained
- Project results lead to policies and follow-up actions



Project Case Studies

Case-study	Participating Countries
Application of isotope hydrology techniques in the Oko transboundary karst aquifer shared by Bosnia and Herzegovina- Montenegro	Bosnia and Herzegovina, Montenegro
Coastal Aquifers	Montenegro, Cyprus, Portugal, Turkey, Bulgaria
Application of isotope hydrology in the transboundary Syr Darya river basin	Kazakhstan, Tajikistan
Source, age and recharge patterns of groundwaters in Southeast Europe (SARGE)	Bulgaria, Ukraine, Romania, Moldova
Influence of climate change on groundwater resources and groundwater-surface water interaction in the Sava River basin	Slovenia, Croatia, Bosnia and Herzegovina, Serbia
Vulnerability assessment of stratified, often transboundary aquifers using the isotope (dating) methods	Armenia, Bulgaria, Croatia, Czechia, Estonia, Georgia, Hungary, Latvia, Moldova, Romania, Russia, Slovakia, Slovenia
Environmental tracers for the assessment of nitrate contamination of coupled groundwater - surface water systems	Czech Republic, Georgia, Poland, Russian Federation, Ukraine



Case Study Implementation Strategy and IAEA Support

Technical Cooperation Programme

Technical cooperation: delivering results for peace and development

Oliver Kracht

Sofiya Lipenkova

Yuliya Vystavna

Christoph Henrich

RER7013 Team

I. Bakiri, K. Meliksetian, F. Skopljak, B. Jolovic, M. Ivanov, T. Markovich, Z. Kovac., C. Christofi, T. Meador, R. Vaikmäe, G. Melidkadze, I. Fórizs, L. Palcsu, R. Aktayev, A. Kalvans, O. Bogdevich, D. Radojević, T. Milivojević, P. Wachniew, P. Mimo Carreira Paquete, A. Persoiu, V. Mocanu, B. Chubarenko, S. Sokratov, N. Todorovic, R. Cernak, P. Malik, N. Rman, U. Pavlic, P. Vreca, A. Kodirov, F. Simsek, M Ekmekci, Y. Nabyvanets, D. Turgunov