### Comparative assessment of small water storage structures in semi-arid regions considering hydro-climatic, geological and socio-economic contexts

Presented by: Mhambi Nyathi

**Co-author(s):** Dr. Tibor Stigter

Dr. Gretchen Gettel

Prof. Mário Franca

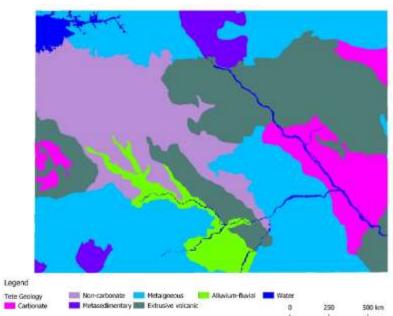


### Research objectives and methods

To assess the feasibility of the different SWSS, namely micro-reservoirs, sand dams and sand rivers, as a function of hydro-climatic, geological and socio-economic contexts

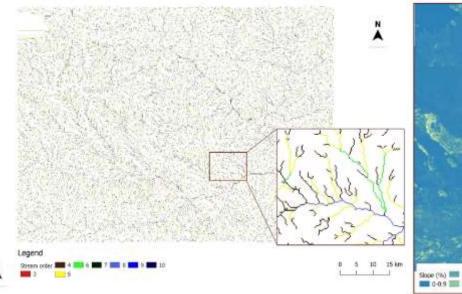
| Mapping                                                                                                                                                                                                | Storage                                                                                                                                                                                                                          | Sedimentation                                                                                                                                | Water quality                                                                                                                                         | Costs                                                                                                                                                                            | Management 🗹                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| To map current<br>distribution of<br>SWSS and show<br>the optimal<br>conditions for<br>siting each<br>structure using<br>Remote Sensing<br>(RS) and<br>Geographic<br>Information<br>System (GIS) tools | To assess the<br>storage potential<br>and related<br>challenges of the<br>different SWSS<br>(micro reservoir,<br>sand dam and sand<br>river) using<br>literature and<br>applying the time<br>dependant water<br>balance approach | To analyse the<br>rate of<br>sedimentation<br>and its impacts on<br>the different<br>water storage<br>structures using<br>literature sources | To comparatively<br>assess the main<br>water quality<br>aspects of the<br>different water<br>storage structures<br>using lessons<br>from case studies | To compare the<br>construction,<br>maintenance and<br>abstraction costs<br>of water storage<br>structures and<br>determine when<br>and how the<br>options are cost-<br>effective | To assess how the<br>storage structures<br>are managed at<br>community level,<br>including their<br>planning,<br>implementation<br>and maintenance |

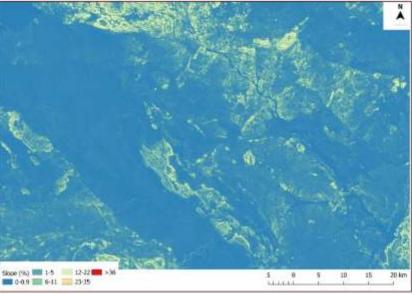
### Methodology cont.



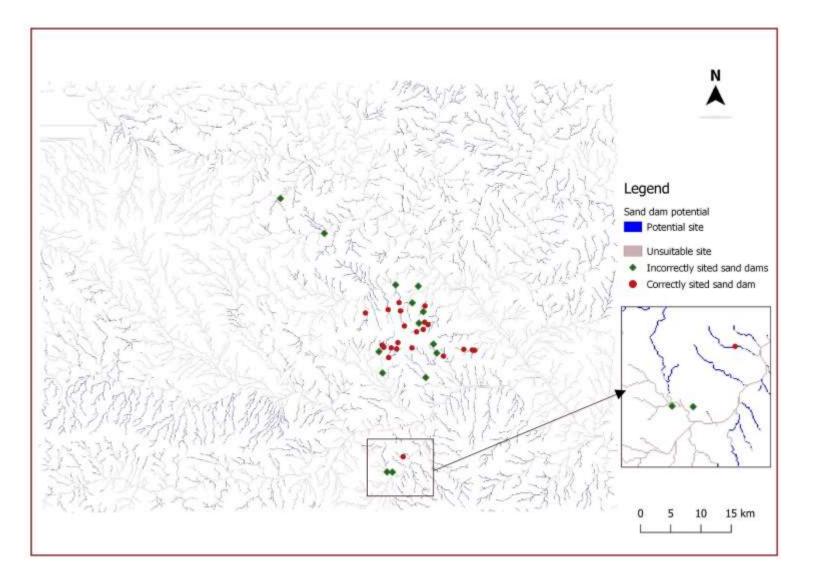

- The research approaches were based on the six specific objectives
- 1. Mapping potential sites for structures
- 2. Comparative assessment for semi-arid regions of sub-Saharan Africa
- 3. Quantitative assessments
- Data sources- journals, PhD and MSc thesis, technical manuals, internal reports from organisations, technical books and conference papers

# Methodology cont. - Mapping criteria


| Parameter                      | Sand Dam                         | Micro reservoir                       | Sand river                  |  |
|--------------------------------|----------------------------------|---------------------------------------|-----------------------------|--|
| Slope                          | 0.5 - 2%                         | 1.5 - 4.5%                            | 0.4 - 1%                    |  |
|                                | Granite, Gneiss, Quartzite,      | Igneous e.g. Granite or a solid rock, |                             |  |
| Geology (structure foundation) | Impermeable and unfractured rock | Granite-gneiss, Crystalline           | Not applicable              |  |
|                                |                                  | metamorphic                           |                             |  |
|                                |                                  |                                       | Granite, Gneiss, Quartzite, |  |
| Geology (for source material)  | Granite, Gneiss, Quartzite       | Not applicable                        | Sandstone                   |  |
|                                |                                  |                                       | 7 0 0 10                    |  |
| Stream order                   | 5, 6                             | 6, 7                                  | 7, 8, 9, 10                 |  |

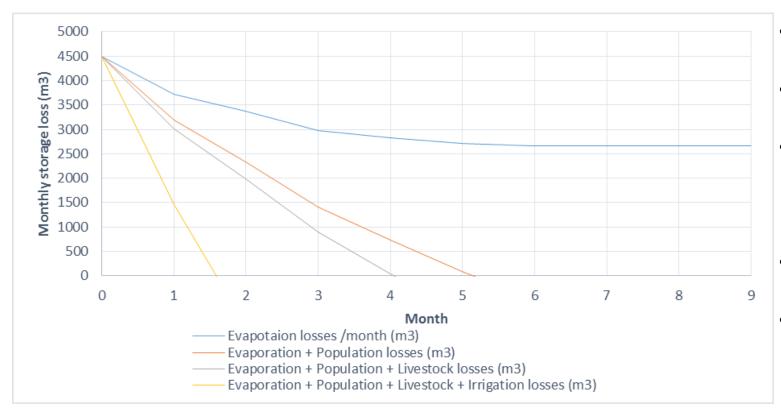

Geology




#### Stream order

Slope






#### Results: Mapping the sand dam potential



- 64% match with known sites
- What is known about existing sites:
  - Most sand dam sites were silted or acted as open surface reservoirs
- Possible reasons for mismatch:
  - Layers used for classification
  - Wrongly sited sand dams
  - Method of construction

# Results: Storage- Chacalanga sand dam water balance (Quantitative assessments)



- Evaporation losses from sand only occur up to the extinction depth
- When water is used for domestic uses only it can last for 5 months
- Including other water users results in a few months on storage
- Similar trends were observed in micro reservoirs
- A larger sand river has the potential of meeting the demand for all sectors because of more storage potential

#### Results: Literature review

| Parameter                                                            | Sand dam                                                                                                                                                                                                                 | Micro reservoir                                                              | Sand river                                                                                                        |  |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|
| Vulnerability of the<br>structure to water<br>losses/ climate change | Less vulnerable to the<br>impacts of climate<br>change because of water<br>storage in sand                                                                                                                               | High because of a small storage                                              | Higher storage capacity of sand rivers                                                                            |  |
| Suitability for direct<br>human consumption                          | Safe but some form of<br>treatment may be required<br>e.g. boiling, for immature<br>sand dams                                                                                                                            | Unsafe for drinking mainly because of the presence of <i>E.coli</i> bacteria | Water from sand rivers is<br>generally clean because of the<br>natural sand filtration (larger<br>sand thickness) |  |
| Average<br>investment/maintenance<br>costs                           | Depends on the size of<br>structure and site conditions<br>however these are low cost<br>structures                                                                                                                      | Higher capital investment costs                                              | Not applicable                                                                                                    |  |
| Common management challenges                                         | Projects are implemented but there is no maintenance.<br>There are different priorities for water use between the community and implementing<br>organisation e.g. water for irrigation over water for livestock watering |                                                                              |                                                                                                                   |  |

## Conclusions and recommendations

- Remote sensing (RS) and geographic information system (GIS) tools can be used at planning stages to map the
  potential of an area for constructing sand dams and micro reservoirs or developing potential water abstraction
  points along a sand river
- SWSS are mainly affected by bacterial contamination, with micro reservoirs being more vulnerable followed by sand dams (especially immature sand dams)
- Sand dams have lower construction and maintenance costs since they are smaller compared to micro reservoirs
- A structure may be properly sited but if there are no management structures in place, it is at the risk of failure
- Sand dams:
  - Instead of constructing sand dams at once, construct in 0.3 m stages
  - Terracing upstream, to reduce erosion rates
- Micro reservoirs:
  - Proper siting of the structure is important as it will ensure maximum storage and reduce the possibility of silting
- Sand rivers:
  - Higher storage potential is achieved if the river channel is wide, deep and is composed of coarse sediments on a flat riverbed

# Thank you