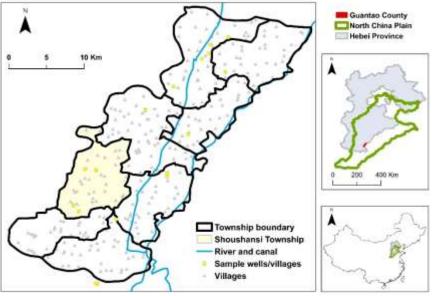
ETH zürich

Program: Contribution of Technology to Groundwater Resilience


Monitoring groundwater abstraction using electric energy as proxy in an area of intensive agricultural pumping

Lu Wang ¹,*, Wolfgang Kinzelbach ¹, Huaixian Yao ², Jakob Steiner ³ and Haijing Wang ⁴ 1 Institute of Environmental Engineering, ETH Zurich, Switzerland; 2 Guantao Department of Water Resources, Guantao, Hebei, China 3 Utrecht University, Utrecht, The Netherlands 4 hydrosolutions Ltd., Zurich, Switzerland

Background and Study Area

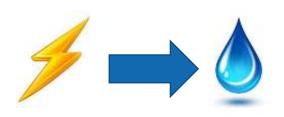
• Groundwater abstraction monitoring is usually absent in areas of intensive agricultural pumping.

- Large number of users operating small-scale wells with primitive equipment.
- Electricity consumption for pumping is metered by existing electricity monitoring grid.

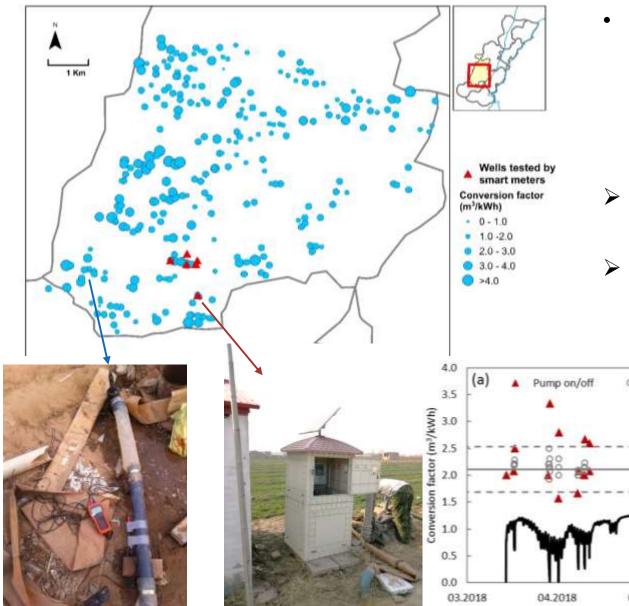
Guantao County in the North China Plain

- Groundwater is overpumped due to the irrigation of winter wheat.
- Groundwater control policy: Water tax is generated when users pump a volume of groundwater exceeding the prescribed quota.
- All irrigation wells are equipped with electricity meters.

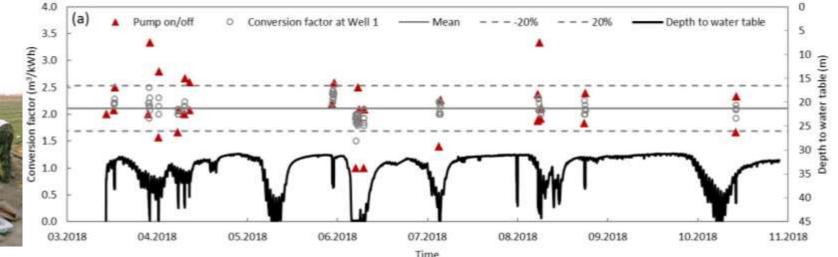
Guantao CountyITIELETS.Area: 456 km²Number of wells: > 8000Irrigation area per well: ~ 3.3 haWater quota: 296 m³/mu/year (1 mu=1/15 ha)


Indirect groundwater abstraction monitoring using electricity consumption as proxy

Key questions to be answered


- 1. How to convert the proxy of electric energy consumption to groundwater abstraction?
 - > Electricity-to-water conversion factor measured by field tests: c_f (m³/kWh)

 $V = E \cdot c_f$


- 2. What is the accuracy of the conversion?
 - Trade-offs between accuracy and efforts in data collection
- 3. Is the monitoring method feasible and sustainable?
 - Comparison of monitoring methods regarding cost, ease of implementation, etc.

Q1 Converting the proxy of electricity consumption to groundwater abstraction

- Pumping tests for measuring Electricity-to-Water Conversion Factor, c_f (m³/kWh)
 - Electricity-to-water pumping tests on single wells [at 281 $C_f = \frac{Q}{N}$ locations]
 - Continuous pseudo pumping tests using smart flow meters and electricity meters [at 6 locations]
- A uniform conversion factor will lead to large errors in the abstraction estimates of single wells.
- Pumping tests performed in whichever irrigation season result in a conversion factor with a relative error of less than 20% for a single well.

Q2 Accuracy of the electricity-to-water conversion Trade-off between accuracy and efforts in data collection

More wells tested \rightarrow More accurate

- How many wells in a region should be tested to obtain an average conversion factor with a relative error less than a threshold ε , e.g., 20% or 10%?
 - Analysis using the theory of interval estimation

Regions	Total Number of Wells	Number of Samples n	Number of Wells to Be Tested (Confidence Level: 95%)	
			<i>ε</i> < 20%	<i>ε</i> < 10%
Village 1	49	29	11	34
Village 2	66	27	11	34
Village 3	51	25	16	54
Village 4	41	20	16	53
Shoushansi District	600	281	14	46

• Taking the average conversion factors of 17 measurements evenly distributed over the county, the average conversion factor of shallow wells in Guantao County is estimated as 2.62 m³/kWh (ε < 20%).

ETH zürich

Q3 Is the monitoring method sustainable? – Method Comparison

- Direct water monitoring by smart water meters
- Indirect monitoring using electric energy as proxy
 - Pumping tests at All wells or at Selected wells

Guantao County in 2018
 Water volume exceeding water quota:11.7 million m³
 Water tax: 2.34 million CNY.

Criterion	Direct Water Metering	Energy Metering + Pumping Tests on All Wells	Energy Metering + Pumping Tests on Selected Wells	
Cost	High (Investment: 9.6 Mio. CNY/a Maintenance: 17.2 Mio. CNY/a)	Medium (Operation cost: 3.6 Mio. CNY/a)	Low (Operation cost: 6300 CNY/a)	
Ease of implementation	Very difficult	Medium	Easy	
Accuracy	High (±5%)	Medium (±20%)	Low (±50%) (or Median for areal abstraction at county level, ±20%)	
Equitability	Equitable	Equitable	Low equitability (regarding abstraction estimates) or Equitable (regarding energy-saving)	

Conclusions

- Direct water metering is presently infeasible in the North China Plain.
- Indirect groundwater abstraction metering using energy consumption as proxy substantially reduces the investment and efforts required in system maintenance and data collection.
- Field tests in Guantao revealed the large variability of the electricity-to-water conversion factors between individual wells. But the error of electricity-to-water conversion for an individual well based on field test is within 20%.
- A trade-off between data accuracy and efforts in data collection can be made by selecting the number of pumping tests.

Thank you!

- Contact: lu.wang.apple@gmail.com.
- Reference: Wang, L.; Kinzelbach, W.; Yao, H.; Steiner, J.; Wang, H. How to Meter Agricultural Pumping at Numerous Small-Scale Wells?—An Indirect Monitoring Method Using Electric Energy as Proxy. Water 2020, 12, 2477. <u>https://doi.org/10.3390/w12092477</u>
- Acknowledgements
 - This research was supported financially by the Swiss Agency for Development and Cooperation (SDC) under the project
 "Rehabilitation and management strategy for overpumped aquifers under a changing climate".

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Agency for Development and Cooperation SDC

Chinese Ministry of Water Resources

 We thank the students from Hebei University of Engineering, Handan and from Beautiful Village Academy, Guantao.

