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ABSTRACT 
 
The difficulties involved in calibration of conceptual models have been partly attributable to the lack of robust 
optimization tools. This paper presents the essential concepts and application to optimize the tank model for 
a Japanese watershed, with a global optimization method known as Differential Evolution (DE), which grew 
out of Price’s attempts to solve the Chebychev Polynomial fitting Problem that had been posed to him by 
Rainer Storn. A breakthrough happened, when Price came up with the idea of using vector differences for 
perturbing the vector population. The crucial idea behind DE is a scheme for generating trial parameter 
vectors. The optimization technique was tested with the field data from Ishite river dam, which is the reservoir 
that supplies water to the city of Matsuyama, Japan. On the basis of these results, the parameter values are 
given, which could serve as an initial estimate for other similar Japanese watersheds. 
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INTRODUCTION 
The major problem concerning the use of hydrological models is the need of parameters which cannot be 
directly measured in the field, especially in nonlinear models. However, it is difficult to assure that the final 
values for the parameters are not a result of either a local minimum or another trap. Therefore, more robust 
algorithms are required to estimate the parameter’s final values (e.g, Santos et al., 1994 and Santos et al., 
2003). A global optimization method known as Differential Evolution (DE) grew out of Price’s attempts to 
solve the Chebychev Polynomial fitting Problem that had been posed to him by Rainer Storn, and a 
breakthrough happened when Price came up with the idea of using vector differences for perturbing the 
vector population (Storn, 1997). The crucial idea behind DE is a scheme for generating trial parameter 
vectors. Initially, a population of points (p in d-dimensional space) is generated and evaluated (i.e. f(p) is 
obtained) for their fitness. Then for each point (pi) three different points (pa, pb and pc) are randomly chosen 
from the population. A new point (pz) is constructed from those three points by adding the weighted 
difference between two points (w(pb – pc )) to the third point (pa). Then this new point (pz) is subjected to a 
crossover with the current point (pi) with a probability of crossover (cr), yielding a candidate point, say pu. 
This point, pu, is evaluated and if found better than pi then it replaces pi else pi remains. Thus we obtain a 
new vector in which all points are either better than or as good as the current points. This new vector is used 
for the next iteration. This process makes the differential evaluation scheme completely self-organizing. 

Thus, the objective of this work is to use Differential Evolution (DE) method of optimization, for application 
with the tank model, which is a hydrological model whose basic principle consists of representing the river 
basin as a set of tanks in which the outflows of each tank are proportional to the water height from the 
respective outlets for the reservoir of Ishite dam that supplies water to the city of Matsuyama, Japan. The 
paper presents the general details of the hydrological modeling with the DE method. 
 
 
DIFFERENTIAL EVOLUTION 
The Differential Evolution method is a population based algorithm like genetic algorithms using the similar 
operators; crossover, mutation and selection. The main difference in constructing better solutions is that 
genetic algorithms rely on crossover while DE relies on mutation operation. This main operation is based on 
the differences of randomly sampled pairs of solutions in the population. The algorithm uses mutation 
operation as a search mechanism and selection operation to direct the search toward the prospective 
regions in the search space. The DE algorithm also uses a non-uniform crossover that can take child vector 
parameters from one parent more often than it does from others. By using the components of the existing 
population members to construct trial vectors, the recombination (crossover) operator efficiently shuffles 
information about successful combinations, enabling the search for a better solution space. The DE method 
consists of three basic steps: (i) generation of (large enough) population with N individuals [x = (x1, x2, …, 
xm)] in the m-dimensional space, randomly distributed over the entire domain of the function in question and 
evaluation of the individuals of the so generated by finding f(x); (ii) replacement of this current population by 
a better fit new population, and (iii) repetition of this replacement until satisfactory results are obtained or 
certain criteria of termination are met. 

The crux of the problem lays in replacement of the current population by a new population that is better fit. 
Here the meaning of ‘better’ is in the Pareto improvement sense. A set Sa is better than another set Sb if : (i) 

no xi ∈ Sa is inferior to the corresponding member of xi ∈ Sb; and (ii) at least one member xk ∈ Sa is better 

than the corresponding member xk ∈ Sb. Thus, every new population is an improvement over the earlier one. 



To accomplish this, the DE method generates a candidate individual to replace each current individual in the 
population. The candidate individual is obtained by a crossover of the current individual and three other 
randomly selected individuals from the current population. The crossover itself is probabilistic in nature. 
Further, if the candidate individual is better fit than the current individual, it takes the place of the current 
individual, else the current individual stays and passes into the next iteration. The crossover scheme (called 
exponential crossover, as suggested by Kenneth Price in his personal letter to the third author) is given 
below. This is coded for ncross � 1 in the program. 

The mutant vector is vi,g = xr1,g + F(xr2,g – xr3,g) and the target vector is xi,g and the trial vector is ui,g. The 
indices r1, r2 and r3 are randomly but different from each other. Uj(0,1) is a uniformly distributed random 
number between 0 and 1 that is chosen anew for each parameter as needed. 

Step 1: Randomly pick a parameter index j = jrand. 

Step 2: The trial vector inherits the j
th
 parameter (initially = jrand) from the mutant vector, i.e., 

uj,i,g = vj,i,g. 

Step 3: Increment j; if j = D then reset j = 0. 

Step 4: If j = jrand end crossover; else goto Step 5. 

Step 5: If Cr <= Uj(0,1), then goto Step 2; else goto Step 6. 

Step 6: The trial vector inherits the j
th
 parameter from the target vector, i.e., uj,i,g = xj,i,g. 

Step 7: Increment j; if j = D then reset j = 0. 

Step 8: If j = jrand end crossover; else goto Step 6. 
 
There could be other schemes (as many as 10 in number) of crossover, including no crossover (only 
probabilistic replacement, NCROSS � 0 that works better in case of a few functions. 
 
TANK MODEL 
Many models have been developed to simulate rainfall–runoff processes, and one of them is known as the 
“tank model”. The model has been modified and some mathematical tools have been adapted in order to 
improve its efficiency (Lee & Singh, 1999). A tank model is a conceptual representation of a basin 
hydrological process. It simulates the wetness of the several soil layers by tanks arranged vertically in series, 
and each one adapted with one or more outlets to account for water flow and filtration to lower layers. 

Precipitation is put into the top tank, and evaporation is subtracted from the top tank. If there is no water in 
the top tank, evaporation is subtracted from the second tank; if there is no water in both the top and the 
second tank, evaporation is subtracted from the third tank. The outputs from the side outlets are the 
calculated runoffs. The output from the top tank is considered as surface runoff, output from the second tank 
as sub-base runoff and output from the third tank as baseflow. Thus, the outflow or seepage from each tank 
is assumed to be proportional to the water height from the whole position of discharge or seepage. Water 
depth of the tank is assumed to be the storage in the basin. In this paper, the tank model was implemented 
with three tanks. Figure 1 shows how the tank model was implemented. 

The parameters to be optimized are the runoff parameters a1, a2, a3 and a4; the infiltration parameters b1, 
b2 and b3; and the height of the runoff outlets h1, h2, h3 and h4. These quantities and the tank model are 
defined by the following expressions: 

 

( ) ( )[ ]1111 htXaty −=  (1) 

( ) ( )[ ]2122 htXaty −=  (2) 

( ) ( )[ ]3233 htXaty −=  (3) 

( ) ( )[ ]4344 htXaty −=  (4) 

( ) ( )tXbtz 111 =  (5) 

( ) ( )tXbtz 222 =  (6) 

( ) ( )tXbtz 333 =  (7) 

( ) ( ) ( ) ( ) ( )tytytytytQ 4321 +++=  (8) 

( ) ( ) ( ) ( ) ( ) ( )tztytytPtXtX 12111 1 −−−+−=  (9) 



( ) ( ) ( ) ( ) ( )tztytztXtX 23122 1 −−+−=  (10) 

( ) ( ) ( ) ( ) ( )tztytztXtX 34233 1 −−+−=  (11) 

where t is the day index; y1(t), y2(t), y3(t) and y4(t) are the runoffs from outlets at day t; z1(t), z2(t) and z3(t) are 
the values of infiltration of each tank at day t; X1(t), X2(t) and X3(t) are the storages in depth at day t; Q(t) is 
the total runoff at day t; and P(t) is the precipitation at day t. 
 

 
Fig. 1 Schematic design tank model with three tanks. 

 
 
FIELD DATA 
Ishite River basin is a sub-basin of Shigenobu River basin in Matsuyama city located in Shikoku Island, 
Japan (Fig. 2). The basin is 72.5 km

2
, the river is 11 km long, and most of the basin is covered by pine forest. 

The daily rainfall and runoff data from January 1992 up to December 2003 at Ishite River dam were used. 
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Fig. 2 Map of the Ishite River basin. 
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 The annual mean precipitation depth is between 1300 and 1500 mm, and the rainy season is from the 
middle of June to the middle of July, with the typhoon season being from August to October. The selected 
period of observed data for daily rainfall and runoff was 1992 to 1993 for the calibration process, while the 
years from 1994 up to 2003 were used to validate the calibrated tank model.  
 
 
APPLICATION AND RESULTS 
 
Setting of the DE parameters 
Before hand, it is necessary to setup certain parameters, which were fixed as: max number of iterations 
allowed, iter = 10000, population size, N = 110 (it should be 10 times of the dimension of the function or 100 
whichever maximum); scheme of crossover, NCROSS = 1 (defined in the program); crossover probability, 
PCROS = 0.9 (suggested to be about 0.85 to 0.99); scale factor, FACT = 0.5 (0.5 � FACT < 1.0); random 
number seed, IU = 1171 and all random numbers are uniformly distributed between -1000 and 1000; 
accuracy needed, which determines accuracy for termination, EPS = 10

-8
. If x in f(x) violates the boundary 

then it is forcibly brought within the specified limits through replacing it by a random number lying in the given 
limits of the function concerned. 
 
Optimization of the rainfall–runoff model 
There are 11 parameters in the tank model to be determined by optimization, which are a1, a2, a3, a4, b1, b2, 
b3, h1, h2, h3 and h4. The ranges for each parameter are presented in Table 1. The initial storages for each 
tank were set as X1 = 0.00 mm, X2 = 0.00 mm and X3 = 100.00 mm. 
 
 

Table 1 Range for the tank model parameters. 

Limits 
Parameters 

1
a  

2
a  

3
a  4

a  
1

b  
2

b  
3

b  1
h  

2
h  

3
h  4

h  

Lower 0.001 0.001 0.01 0.01 0.15 0.01 0.0 10 10 10 10 
Upper 0.1 0.1 0.3 0.7 0.9 0.04 0.3 90 120 120 120 

 
 
 The following objective function F, to be minimized, was chosen: 
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where Qo and Qc are the observed and calculated runoff (mm), respectively, and n is the number of days in 
the data set. As stated earlier, the period used for the calibration was from January 1992 to December 1993, 
while the period from January 1994 up to December 2003 was used to validate the calibrated tank model.  
 The correlation (r) and bias (B) statistical indexes were used as criteria for evaluating the model 
performance. The correlation computes the variability of a number of predictions around the true value. 
Different from correlation, the bias is a measure of systematic error and thus it calculates the degree to which 
the estimation is consistently below or above the actual value. High correlation alone does not mean high 
accuracy. For example, a significant constant bias in the estimations would provide the highest correlation (r 
= 1) but poor accuracy. As a result, the accuracy of estimations is better analyzed by using both bias and 
correlation. The perfect fit between observed and predicted values, which is unlikely to happen, would have r 
= 1 and B = 0. Salas (1993) provides the equations to calculate these indexes. 
 The DE method found the following parameter values a1 = 0.0658 a2 = 0.093, a3 = 0.042, a4 = 0.013, b1 
= 0.175, b2 = 0.043, b3 = 0.007, h1 = 11.562 mm, h2 = 40.571 mm, h3 = 64.814 mm and h4 = 9.916 mm. 
Figure 3 shows the comparison between observed and calculated reservoir inflows for this calibration data 
set (r = 0.91 and B = 0.00 mm). The optimized parameter values are used to validate the tank model using 
the period January 1994 up to December 2003, r = 0.78 and B = –0.13 mm, as shown in Fig. 4. These 
figures and indexes (high correlations and low biases) reveal that the calibrated tank model is very efficient 
for estimating reservoir inflows. 

 



 

Fig. 3 Hyetograph, and observed (Qo) and calculated (Qc) inflows, January 1992–December 1993 
(calibration). 

 
 

 
Fig. 4 Hyetograph, and observed (Qo) and calculated (Qc) inflows, January 1994–December 2003 
(validation). 

 
CONCLUSION 
The tank model, a conceptual hydrological model, was used in order to simulate the daily runoff in Ishite 
River basin, Matsuyama city, Japan. It contains 11 parameters which should be set, thus global optimization 
method known as Differential Evolution (DE) was used to optimize such parameters. The main conclusions 
are as follows: (1) the tank model was shown to be useful for simulation in such a basin; (2) the DE method 
was proved to be robust to optimize its 11 parameters; however, in order to perform optimally, the 
probabilistic and deterministic components in the DE method must be chosen carefully, and as a first 
attempt, the following values  was proposed: ITER = 10000, N = 110; NCROSS = 1; PCROS = 0.9; FACT = 
0.5; IU = 1171; EPS = 10

-8
; and (4) the found optimized parameters, which could be representative for the 

area, are as follows a1 = 0.0658 a2 = 0.093, a3 = 0.042, a4 = 0.013, b1 = 0.175, b2 = 0.043, b3 = 0.007, h1 = 
11.562 mm, h2 = 40.571 mm, h3 = 64.814 mm and h4 = 9.916 mm. 
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