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Abstract: In the face of climate change and for sustainable management of arid areas, it is crucial to 
understand the link between water availability and vegetation growth. This linkage is often investigated using 
time series of rainfall data and a vegetation index from satellite sensors (e.g. NDVI). However, rainfall alone 
is not sufficient to describe available water for vegetation, and other bio-geophysical factors should be taken 
into account. Hydrological modeling offers a powerful tool for this purpose. In this study, hydrological 
response units (HRU) delineated in a distributed hydrological model system (JAMS), were used to compute a 
complete water balance and to assess the vegetation response to climatic variability in a Mountain Basin 
(Córdoba, Argentina). Vegetation changes were analyzed through NDVI time series from SPOT-
VEGETATION images over the 12 year period 1998-2009. Precipitation was always the least correlated 
variable to vegetation growth, except in less vegetated rocky areas. Synchrony of the vegetation growth with 
soil water saturation was found to be more direct (less delay), specially in grasslands. Our results show that 
hydrological modeling can aid in the study of vegetation response to climate variability, high lightening the 
importance of taking into account other factors that influence water availability besides precipitation. 
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Introduction 

Water runs through very different systems, such as air, vegetation or soil, creating a complex web of 
interactions. Plant growth and productivity depend on available water (Jobbágy et al., 2002). In parallel, and 
through this demand, plants exert a strong influence on many key hydrologic variables (Nosetto et al., 2011). 
Given the current scenario of global change, increased population and food insecurity, studies towards an 
understanding of the role of water in the interface between the “geo-spheres” (litho, hydro, bio, and atmo-
spheres) are crucial. Many studies have focused on ecosystem responses to climate variability (Walther et 
al. 2002). Others have contributed in disentangling the effects of land cover change on the water balance 
and the quantity and quality of water resources (Krause, 2002; Viglizzo et al. 2010). In this quest, remote 
sensed information has aided significantly as it offers the possibility to measure different environmental 
characteristics over wide areas and long time periods. Also hydrological modeling is becoming an essential 
tool to study associations between the water cycle and land cover changes. 
 The Normalized Difference Vegetation Index (NDVI) (Tucker, 1979), is one of the most extensively 
used remote-sensing based vegetation indices. NDVI data provide estimates of vegetation photosynthetic 
activity that can be related to primary productivity, leaf area, canopy coverage, and chlorophyll density, as 
well as to vegetation phenology. NDVI data is regarded as a reliable indicator for land cover conditions and 
variations over the years, being widely used for vegetation monitoring. For example, Seaquist et al. (2003) 
developed a NDVI based primary production model for grassland biomass; Birky (2001) developed a linear 
model relating NDVI to leaf biomass and specific gross primary productivity; Ludeke et al. (1996) used 
satellite NDVI for the validation of global vegetation phenology. Relating the NDVI to climatic variables has 
allowed to explore and predict the response of vegetation to environmental variability. In this context, NDVI 
was found to relate well with precipitation and to be highly sensitive to rainfall anomalies such as drought 
(Kogan, 2000; Li & Kafatos, 2000). However, this relationship is controlled by other factors such as land-
cover type and climate conditions (Camberlin et al., 2007). Therefore, considering additional information of 
the water cycle can significantly improve our knowledge and prediction capacity of productivity changes 
under different climatic scenarios. 
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 Hydrological models are simplified, conceptual representations of a part of the hydrological cycle, 
primarily used for prediction and for understanding hydrologic processes. Distributed models, in contrast to 
aggregated ones, do not consider catchments as a unique unit but distribute the components of the water 
cycle into smaller modelling units. In the model J2000g (Krause and Hanisch, 2009), this units are 
Hydrological Response Units (HRUs), and  are defined by many characteristics, such as topography, land-
use, soil type and hydrogeology. The HRUs represent areas with a homogeneous hydrological response 
(Flügel, 1995). In each HRU, the hydrological cycle is modeled and each component is computed on every 
cycle. This information, which not only takes into account meteorological variables, but also land use and 
geological data, can be of great help to improve the correlation between climatic variability and productivity. 
 In this work we propose the use of variables obtained by a distributed hydrological model to examine 
temporal responses of remotely sensed NDVI environmental variability during a twelve year period (1998-
2009). We test the hypothesis that actual evapotranspiration and water saturation will have higher 
correlations coefficients with NDVI than precipitation. We also compare these correlations between several 
land cover types in a semi-arid region of central Argentina. 
 

Methods 

Study area 

This study was performed in the San Antonio river Basin, located in the central portion of the Sierras 
Grandes of Córdoba, Argentina (1800–2400 m a.s.l., 31° 34 S, 64° 50 W), in central Argentina (Fig. 1).  In the 
high plateau the mean temperature of the coldest and warmest months are 5.0 and 11.4 C, respectively, and 
there is no frost-free period. Mean annual precipitation is 818 mm, with most rainfall concentrated in the 
warmer months, between October and April. The area comprises different landscape units, including valley 
bottoms and ravines, plateaus with different degrees of dissection, rocky hilly uplands and steep 
escarpments. Most of these units (with the exception of plateaus with low dissection) are rough, with 
abundant rocky outcrops, steep slopes and high topographic variability at short distances (Cingolani et al., 
2004). Vegetation consists of a mosaic of tussock grasslands, grazing lawns, granite outcrops, Polylepis 
australis woodlands, and eroded areas with exposed rock surfaces (Cabido, 1985; Cingolani et al., 2004). 
The basin has an area of 520 km2 and the water sources are located at 2200 m asl. The main direction of the 
flow is west, ending in the San Roque Lake, one of the main water reservoirs of the province. 
 

 

Figure 1: Map of Argentina showing the average NDVI for the studied period: April 1998 to December 2009, and zoom 
of the study area. The arrow indicate the location of the San Antonio River Basin. 
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Vegetation growth 
 
NDVI time series from April 1998 till December 2009 were obtained from the VEGETATION sensor on board 
the SPOT satellite platforms. Such data are available free of charge at the Vlaamse Instelling voor 
Technologisch Onderzock (VITO) Image Processing centre (Mol, Belgium) (http://www.vgt.vito.be). The 
NDVI is based on the red (R) and near infra red (NIR) spectral bands of which the remote sensor registers 
the portion of the reflected radiation. Since green plants use red radiation for photosynthesis, their red 
reflectance is low compared to other types of land cover. The NIR reflectance is higher for vegetation than 
for bare soil, because of multiple scattering in the plants and plant cells. NDVI is calculated as: 

                
NIR R

NDVI
NIR R

−=
+

  

The magnitude of NDVI is related to the level of photosynthetic activity in the observed vegetation. 
Generally, higher positive values of NDVI indicate vigor and quantity of vegetation, whereas low values are 
usually associated with non-vegetated areas. This means that the evolution of vegetation growth can be 
observed using repeated NDVI measurements.  

The 10-day SPOT-VEGETATION NDVI data at 1km ×1km spatial resolution used as input for this study were 
preprocessed to take into account radiometric calibration, atmospheric and geometric correction, as well as 
cloud removal. Daily images were combined into 10-day composites (S10) by selecting the maximum NDVI 
within the compositing period (1-10, 11-20 and 21-end of month), resulting in 36 dekads per year. 
Compositing into dekadal images reduces cloud contamination (Lewis et al., 1998), but is still sufficient to 
capture the evolution of vegetation growth over time. When considering the time domain, the NDVI time 
series still contains noise due to undetected clouds/haze, viewing geometry and local aerosols in the 
atmosphere. The temporal profiles were therefore further smoothed using the modified Swets-method (Swets 
et al., 1999) implemented in GLIMPSE Software (Global Image Processing Software, Eerens 2010). 
Smoothing was executed for a full year of data spanning an entire growing season and was done in two 
steps. First, suspicious low and high values were identified based on a number of parameters. Secondly, 
these values were replaced using polynomial interpolation. 

 
 
Hydrological modeling 

To model the basin water cycle components, we recently implemented the J2000g model (Krause and 
Hanisch, 2009) within the JAMS modeling framework system (Kralisch and Krause, 2006). This model can 
be categorized as a spatially distributed conceptual hydrological model with a low number of calibration 
parameters. J2000g requires few meteorological inputs (precipitation; minimum, average and maximum 
temperature and extraterrestrial solar radiation).The potential evapotranspiration (potET) was calculated 
according to Hargreaves-Samani method (Samani, 2000) which requires only temperature and 
extraterrestrial solar radiation calculations. The real evaporation (ET) is calculated with consideration of the 
current soil humidity. A correction function is applied under the assumption that below certain water content 
level, the real evaporation decreases proportionally to the potential evaporation until it becomes zero at the 
permanent wilting point. Snow accumulation and snowmelt are simulated with a day-degree approach 
followed by a soil moisture accounting module consisting of simple water storage with a capacity defined 
from the field capacity of the specific soil type within the respective modeling unit. Water stored in the soil 
water storage can only be taken out through evapotranspiration. Runoff is generated only when the soil 
water storage is at saturation and partitioned into direct runoff and percolation based on the slope of the 
modeling unit and the underlying hydrogeology. The percolation component is transferred to ground water 
storage and baseflow by a linear storage model. The total streamflow of a catchment results from the 
summation of the direct runoff and the baseflow components from each modeling unit. 

The storage concept used in the J2000g considers the hydrological conditions inside the soil profile 
by two different storages. The first one is the middle pore storage (MPS) describing the water storage 
capacity of the middle sized pores (diameter 0.2–50 µm). In such pores water is held against gravity and can 
only be drained out by an active tension. The second storage called large pore storage (LPS) describes the 
water storage capacity of pores with diameter > 50 µm, which are not able to hold the water against gravity 
and are therefore considered as the source for vertical and horizontal flow. The storage capacity of the MPS 
and LPS is determined by the description of soil profiles together with the effective rooting depth of the land 
use class for each HRU. 
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Correlations between NDVI and climatic variability 

Given that NDVI pixels of 1km×1km have a coarser spatial resolution than HRUs, we extracted data at NDVI 
spatial resolution (Fig. 2). To compare different land covers we chose NDVI pixels that were internally 
homogeneous regarding land cover. To achieve this, we used a vegetation map derived from a 2004 
Landsat 5 TM satellite image. The land cover types selected for this study consisted of: (1) forests (mostly 
pine species resulting from afforestations); (2) rocky outcrops with thin tussocks (areas covered by rock 
and patches of thin tussocks such as Deyeuxia hieronymi); (3) short grasslands (grazing lawns with 
species such as Alchemilla pinnata and Carex fuscula), and (4) thick tussocks (grasslands dominated by 
Poa stuckertii). For each type of land cover, 4 NDVI pixels of 1km×1km were chosen, trying to minimize 
internal variability regarding land cover types and maximizing the distance between pixels to reduce spatial 
dependence.  

For each pixel, the HRUs partially or completely contained in it were identified and data derived from 
the hydrological model were extracted for a each HRU. The variables extracted were precipitation (pp), 
relative soil saturation (sat) and actual evapotranspiration (ET), and data was converted at the same 
temporal resolution of NDVI time series (10 daily). To obtain values of these variables for each NDVI pixel, 
we calculated the fraction of area covered by each HRU in a given NDVI pixel. Each variable was then 
multiplied by the fraction of the corresponding HRU in the NDVI pixel and then summed across all the HRUs 
contained in that NDVI pixel. Cross-correlations for several lags were performed using InfoStat software (Di 
Rienzo et al., 2011) and the maximum coefficient of correlation as well as the lag at which it was recorded 
were saved for posterior statistical analysis. Maximum correlation coefficients and lags were compared 
between land cover types and water variables using a non parametric test. We tested the effect of land cover 
type, water cycle variables and the interaction between them, on both the correlation coefficient and the lags.  
 

 

 

Figure 2: HRUs in the San Antonio River Basin. NDVI pixels are shown in light gray and HRUs are colored according to 
land cover types to show surface composition 

 
 
 
Findings and discussion 
 
 
The NDVI time series described periodic patterns (within years), depicting changes in vegetation 
phenological cycles associated with different land-use types (Table 1, Fig. 3). These patterns show seasonal 
phases: a tendency to a single greenness peak in summer, with limited growth in winter. The maximum 
values of NDVI were found in forests (0.58) followed by thin tussocks and short grasslands (0.47 and 0.46, 
respectively), with the lowest values in rocky outcrops with thin tussocks (0.36). NDVI variability was higher 
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in both types of grasslands, thick tussocks and short grasslands, due to higher intra-annual changes of 
productivity of these vegetation types. 
  
 

 
Figure 3: Twelve years of smoothed 10 daily composites NDVI values for different land cover types in San Antonio River 

Basin, Argentina. 
 
 
 
 
 
 

Table 1: Estimates of NDVI, precipitation (pp), relative soil saturation (sat) and actual evapotraspiration (ET) and their 
variability as standard deviation in a twelve year period for different land cover types in the San Antonio River Basin. 

 

LAND COVER TYPE 
NDVI PP (mm) SAT (%) ET (mm) 

Mean SD Mean SD Mean SD Mean SD 

Forest 0.58 0.08 21.19 25.63 41 25 17.72 13.70 

Rocky outcrops & thin tussocks 0.36 0.07 24.04 27.96 29 21 12.47 10.48 

Short Grasslands 0.46 0.13 17.50 25.59 35 31 13.47 13.77 

Thick tussocks 0.47 0.14 21.98 27.01 50 29 17.63 13.02 

 
 
 
 
Correlation analysis between the NDVI series and the climate variables (Table 2), calculated by cross-
correlation function (CCF), showed positive significant correlations for all variables. The strength of the 
correlation with NDVI varied significantly between precipitation (pp), relative soil saturation (sat) and actual 
evapotranspiration (ET) and between land cover types (p<0.001), being always higher than 0.5. Actual 
evapotranspiration was the variable with the highest correlation coefficients for all land cover types, 
especially for both types grasslands, short grasslands and thin tussocks, with mean values of the maximum 
correlation coeficients of 0.90 and 0.89, respectively. In forests, although the correlation between NDVI and 
actual evapotranspiration was the highest, the difference with relative soil water saturation was not as big as 
in other land cover types (0.71 for NDVI_ET and 0.67 for NDVI_sat). Relative soil water saturation showed 
higher crosscorrelation coefficients with NDVI than precipitation in short grasslands (0.75 vs. 0.69), thick 
tussocks (0.74 vs 0.66) and forests (0.67 vs 0.53) but the opposite occurred in rocky areas (0.58 vs. 0.66). 
Correlations were always lower in forests except for relative soil saturation, which was higher lowest in rocky 
outcrops with thin tussocks (Fig. 4).  
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Table 2: Maximum correlation coefficients and lags expressed as 10-day periods between NDVI and actual 
evapotranspiration (NDVI_ET), precipitation (NDVI_pp),  and relative soil saturation (NDVI_sat) for different land cover. 

LAND COVER TYPE 

NDVI_ET NDVI_pp NDVI_sat 

r max Lag  r max Lag r max Lag 

mean SD mean SD mean SD mean SD mean SD mean SD 

Forests 0.71 0.03 5.25 0.96 0.53 0.01 5.75 1.50 0.67 0.01 3.00 0.00 

Rock & Thin tussocks 0.83 0.01 3.75 0.50 0.66 0.01 3.75 0.50 0.58 0.03 2.00 0.00 

Short Grasslands 0.90 0.00 2.50 0.58 0.69 0.01 2.75 0.50 0.75 0.01 0.00 0.00 

Thick Tussocks 0.89 0.03 2.00 0.00 0.66 0.02 3.00 0.00 0.74 0.01 0.25 0.50 
 

 

 

Figure 4: Maximum cross-correlation coefficients between NDVI and actual evapotranspiration (ET), precipitation (pp, 
and relative soil saturation (sat) for different land cover types in San Antonio River Basin, Argentina. Error Bars indicate 

standard deviation and different letters indicate statistically significant (p<0.05) estimates.  

 

Lags at which maximum correlation coefficients were recorded varied significantly between land cover types 
and between variables, and interaction was significant (p<0.001) (Fig. 5). For every land cover type, the 
response of vegetation to relative soil saturation was the shortest, especially in short grasslands and thin 
tussocks, where maximum correlation was found for lags of 0 and 0.25, respectively, which means at or 
almost at the same 10 day period. In forests, the response to soil water content, expresses as percentage of 
soil saturation, was found at lag 3, which means that forest growth responds to soil saturation between 30 to 
40 days later. For all cover types but thick tussocks, vegetation responds to actual evapotranspiration and 
precipitation with the same delay. However, thick tussocks showed a more delayed response to precipitation 
than to evapotranspiration. In concordance to what has been found in other studies, forest showed the most 
delayed response (Weiss et al., 2004) to precipitation and evapotranspiration with lags between 50 to 60 
days. Short grasslands respond faster to water availability than rocky areas. 
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Figure 5: Lags at which maximum correlation coefficients between NDVI and actual evapotranspiration (actET), 
precipitation (pp), and relative soil water saturation (sat) were registered. Error Bars indicate standard deviation and 

different letters indicate statistically significant (p<0.05) estimates. 

 

Conclusion 

The synchrony of the seasonal vegetation pattern with climate differed between the variables considered, 
depending on the type of land use. Precipitation was always the least correlated variable to vegetation 
growth, with the exception of rocky areas, which are less vegetated. This areas, associated with poorer soils 
showed the least correlation with relative soil water saturation. Actual evapotranspiration, always showed the 
highest correlation with vegetation growth which highlights the importance of temperature as a limiting factor 
to vegetation growth in the study area. However, synchrony of the vegetation growth with soil water 
saturation was found to be more direct (less delay), specially in grasslands. 
 

This study shows that hydrological modeling can aid in the study of vegetation response to climate 
variability, high lightening the importance of taking into account other factors that influence water availability 
besides precipitation. It allows deepening the understanding of the mechanisms and the interaction between 
the atmosphere, the topography and the soil, as well as the vegetation. Application of the easily acquired 
and interpreted NDVI time series data allowed detection of changes in phenological patterns associated with 
land cover and their modulation by climate. Given its low cost, wide spatial extent and sensitivity to key 
environmental variables such as those explored here, NDVI time series analysis coupled with hydrological 
modeling can aid in monitoring programmes, especially in semi-arid environments. 
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