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Abstract--This paper presents the results of an Artificial Neural Networks - ANN model for the monthly 
rainfall-runoff transformation in the context of CLARIS LPB Project. One of the objectives of the CLARIS LPB 
Project is to investigate how global climate changes will modify the guaranteed output of a system of 
interconnected hydroplants in La Plata Basin. In particular it is proposed to analyze the performance of the 
hydroplants system within the La Plata basin under a set of future climate scenarios. The methodology 
should be based on Monte Carlo simulations using synthetic streamflow series representing future scenarios 
of global climate changes. These series should be obtained from synthetic rainfall series using standard 
rainfall-runoff models at a monthly time scale. A monthly rainfall-runoff model available is Artificial Neural 
Networks - ANN for the rainfall-runoff transformation. The case study is being conducted for the 
interconnected power system South-Southeast of Brazil 

Key-words: Artificial Neural Network, climate changes impact, hydropower 

1. INTRODUCTION 

Transforming rainfall into runoff is a process difficult to formulate due to the large number of variables that 
are relevant and modify both in space and time. Evaluating this process with accuracy is what allows rational 
management of the different water uses, such as: supply, irrigation, electric power generation, to forecast 
extreme flood events and dry periods, to generate scenarios of streamflow from precipitation scenarios 
resulting from climate change and others. Generally mathematical models known as rainfall-runoff models 
perform the evaluation of this process. 

Rainfall-runoff models are divided into two major groups: conceptual and empirical models. The 
conceptual models describe mathematically the processes of the hydrologic cycle based on physical laws 
governing each of these processes. However, despite generally good results are achieved, some aspects of 
the conceptual models are challenging. Calibration is not easy and, in many cases, depends on field surveys 
of data often not available. Also the use of basin averages for relevant parameters together with the non 
linear character of those processes leads to additional difficulties. These characteristics often render the 
implementation of conceptual model difficult and financially burdensome.  

Empirical models are an alternative to the conceptual models. The main characteristic of this type of 
model consists of establishing a stable relationship between input and output variables without accounting to 
the physical laws that govern the natural processes when rainfall is transformed into runoff. These models 
are easy to apply and supposedly cheaper. Examples of these models are multivariable equations with 
parameters estimated by Artificial Neural Networks - ANNs. This was the method chosen to generate 
scenarios of monthly average streamflow at CLARIS LPB Project. 

One of the objectives of the CLARIS LPB project is to investigate how global climate changes will 
modify the guaranteed output of a system of interconnected hydropower plants. In particular it is proposed to 
analyze the performance of the hydropower plants system within the La Plata basin under a set of future 
climate scenarios. The methodology should be based on Monte Carlo simulations using synthetic streamflow 
series representing future scenarios of global climate changes. These series should be obtained from 
synthetic rainfall series using standard rainfall-runoff models at a monthly time scale. A monthly rainfall-runoff 
model available is Artificial Neural Networks - ANN for the rainfall-runoff transformation. The rainfall series 
obtained at monthly time scale need to be generated statistically by defining appropriate stochastic 
processes to represent the rainfall time series (Fill et al. 2011). This paper presents the ANN method to 
estimate the best rainfall-runoff model for the Rio Paranaíba basin in Emborcação station which drains an 
area of 29,050 km2. 

 



2. ARTIFICIAL NEURAL NETWORKS - ANN 

According (Machado et al., 2011) An ANN is a structure of elements formed by nodes or neurons, similar to 
the structure of the human brain, mathematically interconnected, representing a function. The coefficients 
and intercepts of the input variables of this function are called weights and biases.  

There are different types of ANN, and the most common is the ANN Multilayer Perceptron - MLP, 
with the neurons distributed in layers, usually three of them (Galvão et al, 1999). From here on, the ANN 
nomenclature will be adopted to designate an ANN Multilayer Perceptron – MLP. Haykin (1994), Galvão et 
al. (1999) and Fernandes et al. (1996) mention that a three-layer ANN can approach any function with non-
linear characteristics. 

In water resources ANNs have been used to solve several problems: inflow forecasting and reservoir 
operation (Jain et al., 1999), simulating and optimizing reservoir operation (Neelakantan & Pundarikanthan, 
2000), fitting rating curves (Machado et al., 2005) and many others. 

One major application of ANN in hydrology has been related to streamflow or rainfall forecasting. 
Recent contributions of Cigizoglu (2003a, 2003b, 2005a, 2005b) and Jain et al. (1999) and Partal and 
Cigizoglu (2009) deal with this topic. Another application has been the estimation of sediment transport 
(Cigizoglu and Alp, 2006, Alp and Cigizoglu, 2007, Cigizoglu and Kisi, 2006). A comprehensive review of 
ANN applications in Hydrology can be found in ASCE Task Committee (2000). The modeling of the rainfall-
runoff process by ANN has been used extensively since at least 15 years and is the main subject of this 
paper. 

In order for an ANN to be able to model properly the rainfall-runoff process, it is should undergo a 
calibration or process called “training” in which its weights and biases are fitted. During the training paired 
sets of inputs and outputs are presented to the ANN. Based on a specific set of weights and biases the ANN 
outputs are calculated and compared to the observed output, if the deviation exceeds an allowable value, the 
weights and biases are corrected and new outputs are computed until the deviation is smaller or equal to the 
allowable value. This process is controlled by special optimization algorithms called back-propagation, 
including the descending gradient with momentum and the Levenberg-Maquardt method. During the training 
process, care should be taken with the ANN architecture, the number of iterations, the initialization of 
weights and the length of series for training. 

Architecture is the way the neurons are distributed among the layers. It is the architecture that 
defines the functional form of the ANN. ANN architecture has been investigated by: Kadowaki & Andrade 
(1997), Ballini et al. (1997), Campolo et al. (1999), Tokar & Johnson (1999), Thirumalaiah & Deo (2000), 
Lima & Ferreira Filho (2003) and Ramos & Galvão (2001). Tokar & Johnson (1999) performed an evaluation 
comparing the length of the data series and the number of ANN inputs and suggest that any increase of the 
number of ANN inputs should be followed by an increase in the lengths of the data series. Lima & Ferreira 
Filho (2003), studying the semi-arid region of Ceará, Brazil, evaluated different combinations of the number 
of inputs and the number of neurons in the hidden layers. Twenty-four ANNs were evaluated, each of them 
trained with three different sets of data. They do not make recommendations about the ideal architecture, but 
present a good method to map it. Ramos & Galvão (2001) propose a methodology to determine the ANN 
architecture, based on the initialization of weights, changes in the transfer and training functions with data 
series of different lengths.   

The number of iterations is the number of times the ANN is trained, or the number of iterations of the 
optimization algorithm to determine weights and biases. Anmala et al. (2000) analyzed the influence of the 
number of iterations, but did not make any special recommendation. It is known that in the case of an 
excessive number of iterations, the ANNs memorize the sample data and do not generalize the problem 
proposed. This process is call overfitting. 

Initialization represents the set of initial values for the weights and biases at the beginning of training. 
Ramos & Galvão (2001) comment as a good practice that the initialization of weights and biases should be 
repeated. The length of the series represents the size of the data series used during ANN training. Different 
lengths of series were considered by Lima & Ferreira Filho (2003) and Sajikumar & Thandaveswara (1999). 
The latter applied temporal ANNs in rainfall-runoff modeling, in the Lee river basin, United Kingdom and 
Thuthapuzha, in Kerala, India and compared the results obtained with the results of other empirical models. 
The ANNs presented the best results. 

3. THE METHOD  

Basically an artificial neuron is constituted by three elements: i) set of weights and biases: responsible for 
ANN learning; ii) sum units computing the linear combination of the inputs; iii) transfer function which a 
response. The most often used transfer functions are the sigmoid and linear functions (Haykin, 1994). 
Usually, the values are normalized, which transforms the real data into a scale compatible with the 
characteristics of the transfer functions.  



Although there is other ANN methods in the literature, the ANN employed in this study uses the 
“Feed Forward Back Propagation” method. In this method, the connection of several neurons is distributed 
with layers. Within the ANN, the data flows in a single direction, feedforward, i.e., the input data are 
propagated through the ANN, layer by layer, in the forward direction. The inputs in the input layer are 
multiplied by the weights of the respective connections. Each neuron in the middle layer receives a linear 
combination of the input elements. This combination generates a stimulus to the transfer function that emits 
an output. The responses of the transfer functions are the inputs to the next layer. The input to the output 
layer is the linear combination of the outputs from the middle layer. The output from the output layer is the 
ANN response (Haykin, 1994). In mathematical terms, the output from a three layer ANN is represented by 
equation (1). 
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Where: x are the input elements, w are the weights between the connections, b the biases, p the number of 
neurons in the input layer, q  the number of neurons in the middle layer, ϕ is the transfer function, y is the 
ANN output and i, j and k are neurons respectively of the input, middle and output layers. 

Choosing an ANN to solve a problem consists of solving two sub-problems: the choice of the 
functional form off f(x,w) and estimating the weights of vector W  (Fernandes et al., 1996). From a statistical 
perspective f(x,w) is a regression function used to fit a vector of inputs X to a vector of outputs  D. The 
elements x are the exogenous variables and w the set of parameters. Thus, the function f(x,w) represents a 
family of curves and the statistical problem is to obtain the optimum estimator W*, which will minimize the 
sum of square of the residues. 

Several specific optimization algorithms for ANN to fit the weights are available in the literature. In 
this study the o Levenberg-Maquardt method (Hagan & Menhaj, 1994) was used. 

Levenberg-Maquardt Optimization 

The Levenberg-Maquart optimization method is an extension of the Newton-Raphson method 
(Machado, 2005). 
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The objective function is quadratic in the following form: 
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Where: ek(n) is the error between the desired output and the output calculated by ANN in the output layer 
and  n is the lenght of the data series. 

For this function Hagan & Menhaj (1994) proposed to compute the corrections of the weights and biases by:  
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Where: J is the matrix of the first derivatives of the error function with respect to the weights called Jacobian 
matrix, µ is a parameter to equation (4) and should be always positive, and T denotes transpose. 

CASE STUDY 

The case study was carried out for the river basin Alto Paranaíba (basin 60). The stations considered were: 
i) Emborcação – streamflow station; ii) Monte Carmelo – rainfall station and iii) Goiânia – climatological 
station.  

The Paraná river runs for 2,570 km to its estuary at the La Plata river, which added to the 1,170 km 
of the Paranaíba river, its main tributary, gives a total of 3,740 km, being the third longest river in the 
Americas. Paranaíba River is formed by many tributaries, of which the most northern is the São Bartolomeu, 
which rises in the Serra dos Pirineus highlands, in the vicinity of Brasília. (Mine et al., 2010). The Figure 1 
presents the Paranaíba River Basin with the stations data used in this study. 

 



INPUT DATA FOR THE ANN MODEL 

Rainfall data  

The rainfall data collection (Monte Carmelo) for the rainfall-runoff simulation in the La Plata basin was based 
on two data sources: i) the National Operator of the Electric System (Operador Nacional do Sistema Elétrico 
- ONS) and ii) National Water Agency (Agência Nacional de Águas-ANA). The period of the study was 
January 1944 to December 2005 (01/44 to 12/01 obtained from ONS and 01/02 to 12/05 obtained from 
ANA). We performed a consistency analysis of these data checking the homogeneity and correcting the data 
(see Figure 2 – accumulated precipitation versus time). 

 

 

Figure 1 – Location of data stations – precipitation, streamflow and temperature 

Streamflow data 

The Paranaíba River at Emborcação station drains 29,050.00 km2. The latitude, longitude and 
altitude of this station are respectively -18o04’12’’, -47o18’07’’ and approximately 530 m. Emborcação 
location for streamflow data are shown on the map of Figure 1. The average monthly streamflows at this 
station were provided by the National Operator of the System – ONS. According ONS, the monthly 
streamflows are reconstructed natural flows again. 

We performed a consistency analysis of these data that consisted of i) analysis of linear trends; ii) 
verification of homogeneity through appropriate statistical tests; iii) data correction by cumulative streamflow 
curves. The monthly average streamflows for Emborcação are consistent dispensing any type of correction. 
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Rainfall MC – rainfall in Monte Carmelo station  

Figure 2 – Correction of the inhomogeneity of Monte Carmelo rainfall station. 

Evaporanspiration data 

The evapotranspiration data were obtained using the model proposed by Blaney and Criddle (Daker, 1960). 
This model is based on average monthly temperature (to see Goiânia station in figure 1) and in the 
percentage of maximum hours of sunshine in the month. It originally was intended to estimate the amount of 
water needed for the irrigation of some kinds of crops, the so called consumptive use. 

Consumptive use was a term first used in the design of the water supply systems in the Western 
United States. The Blaney-Criddle method is a widely used equation for its estimation. In this case the term 
“consumptive use” is considered the same as potential evapotranspiration.  

The Blaney-Criddle equation contains coefficients accounting for plant type, plant growing season, 
mean monthly temperature, and seasonal and latitudinal variation in theoretical solar radiation. In metric 
units the equation may be written as: 

)13,8457,0( +×××= mC TPKU         (5) 

Where: 
cU is the consumptive use (potential evapotranspiration), in millimeters per month; K  is a crop use 

coefficient, dimensionless; P is the percentage of monthly sunshine hours within the year; 
mT  is the average 

monthly temperature, in °C. The values of  K and other information the reader finds in Mine et al. (2010). 

ANN MODEL APPLICATION AND ANALYSIS OF RESULTS 

ANN Training 

The problem of training an ANN to solve a rainfall-runoff type problem is to fit a suitable function to a data 
sample. The rainfall-runoff process is non-linear, and the functional form for the fit is unknown. In this case, 
applying an ANN not only means to fit the best weights and biases to the sample of data observed, but also 
to investigate, by varying the ANN architecture, which is the best functional form for to observed data. 

The ANNs used are of the three-layer MLP type. The input layer does not have transfer functions. All 
neurons of the middle layer and the output layer have a transfer function of the sigmoid and linear type, 
respectively.  

In order to investigate the best functional form, 24 ANNs were created with variations in the number 
of inputs and the number of neurons in the middle layers. The output is always runoff. Each combination of 
inputs was called a model. Table 1 shows the input and output for each of these models. For each model 3, 
5, 8 and 10 neurons were used in the middle layer, making up the total of 24 ANNs combinations. Varying 



both the number of neurons in the middle layer and the number of inputs, allows the evaluation of ANN 
sensitivity in terms of its architecture. 

During the training of the 24 ANNs, the following parameters were considered: length of data series, 
number of iterations called epochs and initialization of weights, Figure 3 shows schematically the training 
process with variation of those parameters. Before the training, all inputs were normalized between 0.1 and 
0.9 according to Sajikumar & Thandaveswara (1999). 

All the ANNs were trained with three different sets of data. From the 221 months available, sets of 
60, 120 and 180 items were used for training, and 161,101 and 41 items for validation, respectively. These 
lengths of the data series were chosen according to Lima & Ferreira Filho (2003).  

An excessive number of iterations during training put the calculated values very close to the 
observed values and does not generalize the process. Because the Levenberg-Maquardt training algorithm 
converges rapidly, all 24 pre-established ANNs were trained arbitrarily over 30, 60 and 90 iterations. 

The weights and biases were initialized at interval [-1,1]. During the training process, the values of 
the weights and biases change in order to reduce the error. When the initial weights and biases are on a 
point close to a local minimum, the optimization process will inevitably converge the solution to the local 
minimum. To avoid this problem, the ANN is initialized six times, at different values. 

The combination, during the training, of the ANN architecture, the input sets, the number of 
initializations and the number of iterations generated a total of 1296 results for analysis. In order to evaluate 
the influence of all elements proposed in the ANN training, an algorithm was created in MATLAB software, 
that manipulates the data, trains, simulates, computes the statistics of the results and stores all responses in 
an output file. The statistics used at this time were the correlation coefficient and the percentage difference 
of the volumes. 

Table 1 Models proposed. 

MODEL INPUTS OUTPUTS 

1 P (t)  EVT (t) Q (t) 

2 P(t) EVT(t) Q (t-1) Q(t) 

3 P(t-1) P(t)  EVT(t-1) EVT(t)   Q(t) 

4 P(t-1) P(t)  EVT(t-1) EVT(t) Q(t-1) Q(t) 

5 P(t-2) P(t-1) P(t) EVT(t-2) EVT(t-1) EVT(t) Q(t) 

6 P(t-2) P(t-1) P(t) EVT(t-2) EVT(t-1) EVT(t) Q(t-2) Q(t-1) Q(t) 

P: mean monthly precipitation (mm/month); EVT: potential evapotranspiration (mm/month); Q: mean monthly 
discharge (m³/s). 

 

 

Figure 3 Training method 



RESULTS OF ANN 

Sensitivity Analysis 

Only 108 of the 1296 results were selected for further analysis. They were selected based on the following 
criterion: for each initialization, model and input set the model with the best performance according to the 
correlation coefficient in the validation was selected. Each model is represented by four ANNs with 3, 5, 8 
and 10 neurons in the middle layer and 30, 60 and 90 inputs during the training. This means 12 possible 
results for each model. The selection of the results for each model and the best of these have been selected.  

Based on the 108 best results, five different analyses were performed: 

a) Number of iterations for the trained models achieves the best results. 

The frequency of the best result for each number of iteration was calculated. It was observed that 78 or 
about 72% achieved the best results when they were trained only for 30 iterations (19 or about 18% for 60 
iterations, 11 or 10% for 90 iterations). 

b) Relationship between the number of iterations and the length of data series.  

The number of iterations for the best result was also evaluated considering the input data. It was believed 
that for the more input data, the number of iterations during training should be greater, Figure 4. 

 

Figure 4 Frequency of the number of iterations 

However, Figure 4 shows that the different input sets used in the training did not influence the number of 
iterations. For all inputs, the best results were achieved by the models trained only 30 times. 

c) Evaluation of the relationship between the number of weights and biases of the ANN and the 
number of iterations.  

It was also analyzed if the number of weights and biases, do influence the number of iterations. In 
order to determine the total number of weights and biases of an ANN, it is enough to know the number of 
connections, the number of neurons in the middle layer and the number of neurons in the output layer. The 
simplest ANN in this study has a total number of 13 weights and biases and the most complex has 101 
weights and biases.   

In order to evaluate the relationship between the number of iterations and the number of weights and 
biases of the ANN, they were divided into seven classes. For each interval, their frequencies were computed 
among the 108 best results and are shown in Table 2.  

Independently of the number of iterations, the best results were most frequent for ANNs with weights 
and biases ranging between 31 and 60.  

d) Analysis of the influence of reinitializing the weights and biases in the training process.  

All 24 ANNs were initialized six times. The first initialization is represented by letter ‘A’ and the last by 
letter ‘F’. Initialization ‘A’ does not mean a particular set of values, but rather the first initialization for a 
particular ANN. Two ANNs with initialization ‘A’ of weights and biases, do not present the same values, 
among other reasons because the ANNs are different and the number of weights and biases is different. 

 

 



Table 2 Frequency of the best results considering the number of parameters and the number of iterations. 

WEIGHTS + 
BIAS 

30 60 90 TOTAL 

0-15 0 0 0 0 

16-30 16 1 0 17 

31-45 23 10 6 39 

46-60 17 4 1 22 

61-75 14 0 2 16 

76-90 6 3 1 10 

91-105 2 1 1 4 

TOTAL 78 19 11 108 

Table 3 shows the average, maximum and minimum R2 values and the Nash-Sutcliffe (NS) efficiency 
coefficient for these groups of models both for training as for validation.  

In order to evaluate the effect of initialization, the best model was chosen for each pair of 
initialization and input set. The results are shown in Table 5, together with the respective values of R2 and 
Nash-Sutcliffe coefficient at validation period. 

It may be observed that initialization influences the choice of model and architecture. Also for the 
same input the results present a certain consistency. For input 1, model 4 with 10 neurons in the middle 
layer presented the best performance. For input 2, model 2 with 10 neurons in the middle layer presented 
the best results and for input 3, independent of initialization, model 2 with 8 neurons in the middle layer has 
showed the best performance. Most of the models in Table 5 were trained over 30 iterations with the number 
of weights and biases varying from 15 to 57, consistent with the results of items ‘a’ and ‘c’ above.  

According to Table 4, for all the inputs, model 2 presented in most cases the best result. This model 
presents only 3 inputs: P (t), EVT (t) and Q (t-1). Once the data available for this basin is not very large, a 
model with 3 inputs, as noticed, should work better. 

Statistical Analysis 

Three models were selected for statistical and graphical analysis of the results, one for each input set. For 
input 1 model 4 and model 6 were the best models. Considering the principle of parsimony, we prefer to 
choose the model 4. For inputs 2 and 3, model 2 performed best, see Table 4. The best performance for 
input 1 using model 4 was the one trained on initialization A, shown on Figure 5.  

Table 3 – R2 and Nash-Sutcliffe values 

 TRAINING VALIDATION 

EPOCH 30 60 90 30 60 90 

WEIGHT+BIAS R
2
 NS R

2
 NS R

2
 NS R

2
 NS R

2
 NS R

2
 NS 

 AVERAGE 

0-15             

16-30 0.86 0.74 0.72 0.53   0.80 0.62 0.64 0.35   

31-45 0.82 0.69 0.77 0.60 0.82 0.69 0.74 0.53 0.72 0.51 0.79 0.63 

46-60 0.88 0.78 0.86 0.73 0.94 0.88 0.81 0.64 0.79 0.59 0.84 0.70 

61-75 0.86 0.74   0.80 0.64 0.77 0.56   0.71 0.44 

76-90 0.90 0.81 0.78 0.78 0,88 0,77 0.81 0.64 0.79 0.58 0.76 0.55 

91-105 0.91 0.83 0.81 0.81 0.87 0.75 0.83 0.68 0.86 0.71 0.79 0.61 

 MAXIMUM 

0-15             

16-30 0.91 0.83 0.72 0.53   0.87 0.75 0.64 0.35   

31-45 0.91 0.83 0.91 0.83 0.91 0.83 0.88 0.78 0.88 0.76 0.89 0.78 

46-60 0.96 0.92 0.91 0.83 0.94 0.88 0.87 0.75 0.87 0.76 0.84 0.70 

61-75 0.92 0.85   0.82 0.67 0.87 0.76   0.73 0.51 

76-90 0.92 0.84 0.93 0.86 0.88 0.77 0.88 0.76 0.84 0.71 0,76 0.55 

91-105 0.92 0.84 0.90 0.81 0.87 0.75 0.83 0.68 0.86 0.71 0.79 0.61 

 MINIMUM 

0-15             

16-30 0.69 0.47 0.72 0.53   0.62 0.32 0.64 0.35   

31-45 0.66 0.44 0.62 0.38 0.68 0.46 0.45 0.18 0.59 0.33 0.62 0.34 

46-60 0.77 0.52 0.77 0.50 0.94 0.88 0.69 0.36 0.69 0.38 0.84 0.70 

61-75 0.65 0.42   0.78 0.60 0.51 0.23   0.70 0.37 

76-90 0.88 0.77 0.86 0.73 0.88 0.77 0.75 0.52 0.76 0.50 0.76 0.55 

91-105 0.91 0.82 0.90 0.81 0.87 0.75 0.82 0.67 0.86 0.71 0.79 0.61 

  



Table 4 Influence of initialization on the determination of the best model for each input set.  

INIC. INPUT 1 INPUT 2 INPUT 3 
 MOD ARC R2 NS MOD ARC R2 NS MOD ARC R2 NS 
A 4 10 0.87 0.76 2 10 0.87 0.75 2 8 0.88 0.76 
B 4 3 0.84 0.71 2 3 0.85 0.73 2 8 0.89 0.78 
C 4 8 0.84 0.71 4 5 0.86 0.73 2 8 0.89 0.78 
D 4 8 0.84 0.70 2 10 0.87 0.76 2 8 0.87 0.75 
E 6 8 0.87 0.76 2 3 0.87 0.75 2 8 0.88 0.78 
F 4 10 0.84 0.71 2 3 0.87 0.75 2 8 0.89 0.78 

MOD: model; ARC: Architecture of the middle layer; NS: Nash-Sutcliffe  
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Figure 5 - Result for input 1 – ANN (model 4 – initialization A) 

From Figure 5 it can be observed that during training model 4 showed a relatively good 
representation of low runoff, but some dispersion occurred from medium to high runoff values (to see Figure 
6). The tendency was to minimize these flows. A particular feature of this model is that despite the ANN was 
trained using predominantly low runoffs, during validation it did very well in forecasting higher runoffs, 
although it preserved the tendency to minimize the latter. The difference of volume in training was 0.78% and 
in validation, 2.89%. The R2 value and the Nash-Sutcliffe coefficient during validation were 0.87 and 0.76 
respectively. During training the values were 0.91 and 0.83 respectively.  
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Figure 6 - Comparison between observed and calculated runoffs by model 4 – input 1– initialization A 



For input 2, model 2, trained in ‘D’ initialization, presented the best result shown in Figure 7. For this 
case model 2 had a similar performance to model 4 (input 1) in terms of coefficients R2 and the Nash-
Sutcliffe. These coefficients were 0.91 and 0.82 respectively.The difference of volume in training was 0,15% 
and in validation was 1,38%. For this case, during training, both the low and high runoffs were slightly better 
represented than in the previous model. During the validation R2 and the Nash-Sutcliffe coefficient were 0.87 
and 0.76 respectively. Also the model presented a strong tendency to reduce the highest runoffs (Figure 8).  
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Figure 7 Best result for input 2 – ANN (Model 2 – initialization D) 

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500

Observed Runoff

C
o

m
p

u
te

d
 R

u
n

o
ff

 

Figure 8- Comparison between observed and calculated runoffs by model 2 – input 2– inicialization D. 

The best result based on R2 value for input 3 was obtained with model 2 and initializations ‘B’, ‘C’ or 
“F’. The performance for this case is shown on Figures 9 and 10. The coefficients R2 and Nash-Sutcliffe on 
validation were 0.89 and 0.78 respectively in all cases. 

Among all models, this one based on R2 and Nash-Sutcliffe coefficients was chosen as the model to 
represent the relationship between rainfall and monthly runoff through the ANNs. The model performed 
reasonably well, both for low and high runoffs. The R2 values in training and validation were respectively 



equal to 0.89 and 0.89. The Nash-Sutcliffe coefficients were 0.79 and 0.78 during training and validation 
respectively. The difference in volume was 0,07% in training and 1,25% in validation. 
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Figure 9 Best result for input 3 – ANN (Model 2 – initialization B, C or F) 
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Figure 10- Comparison between observed and calculated runoffs by model 2, input – 3, inicialização B, C or 
F 

CONCLUSION 

The best result based on R2 and Nash-Sutcliffe coefficients for input 3 was obtained with model 2 and 
initialization ‘B’, ‘C’ and ‘F’ that present the same result. Among all models, the model 2, input 3 and 
initialization B, based on R2 values both for training and validation was chosen as the model to represent the 
relationship between rainfall and monthly runoff through the ANNs to the Emborcação station in Paranaíba 
basin.  
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