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Abstract--The objective of the research is to investigate how global climate changes will modify the 
guaranteed output of a system of interconnected hydropower plants. In particular it is proposed to analyze 
the performance of the hydropower plants system within the La Plata basin under a set of future climate 
scenarios. The method should be based on Monte Carlo simulations using synthetic streamflow series 
representing future scenarios of global climate changes. These series should be obtained from synthetic 
rainfall series using standard rainfall-runoff models. The rainfall series obtained at monthly time scale need 
to be generated statistically by defining appropriate stochastic processes to represent them. The generation 
of synthetic rainfall series is done by the Monthly Seasonal Multivariate Autoregressive Model SMMAR (1) 
which deals with seasonal by standardizing rainfall and considers non-stationarity in the correlation structure. 
Time-varying parameters are required to include seasonal variability in the correlation structure. The SMMAR 
(1) model, applied to the South-Southeast of Brazil, can be satisfactory for the generation of future scenarios 
of precipitation. 
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1. INTRODUÇÃO 

The objective of the research project in which this paper is inserted is to investigate how global climate 
changes will modify the guaranteed output of a system of interconnected hydropower plants. In particular it is 
proposed to analyze the performance of the hydropower plants system within the La Plata basin under a set 
of future climate scenarios.  

The method should be based on Monte Carlo simulations using synthetic streamflow series 
representing future scenarios of global climate changes. These series should be obtained from synthetic 
rainfall series using standard rainfall-runoff models at a monthly time scale. A monthly rainfall-runoff model 
available is Artificial Neural Networks - ANN for the rainfall-runoff transformation.  

The rainfall series obtained at monthly time scale (object of this paper) need to be generated 
statistically by defining appropriate stochastic processes to represent the rainfall time series. For generation 
of synthetic series of monthly rainfall the Monthly Seasonal Multivariate Autoregressive Model SMMAR (1) is 
used.  

However, the suitability of these models will depend on the results of a validation study and the 
availability of an estimate of their parameters under global climate change from the Global Circulation Model 
- GCM output. These parameters should be provided by GCM and will be needed at the scale of the main 
sub-basins, because of the important regional diversity of rainfall pattern within the La Plata basin. This part 
of the study is supposed to be performed by another work group of the Project. 

Once the synthetic streamflow series are obtained at the principal sub-basin, disaggregation of these 
series at individual hydropower plant would be necessary. This can be done by means of standard 
regionalization techniques used by Brazilian energy sector to transpose streamflows from river gauges to 
hydropower plant sites.  

Next, streamflow series should be converted to natural energy series also using the method used a 
long time by Brazilian electric utilities in their power supply studies. The natural energy inflows at each 
hydropower plant are then combined and natural energy hydrograph method will be used to obtain the 
guaranteed overall energy output for a given energy shortage probability (risk).  

For the simulations to be performed it is necessary to have an estimate of future energy demands 
and how much of these have to be supplied by local plants. Results for several basic climate scenarios 
should be compared and conclusions about the impact of global climate changes on hydropower generation 
may be outlined. Models for the natural energy hydrograph method simulation are available both at electric 
power utilities and at “Universidade Federal do Paraná – UFPR”.  

Since the CLARIS LPB Project is supposed to be completed within four years this sub-project should 
be completed at least within the same time. Of course results of GCM models are needed to start the 
generation of synthetic rainfall series, but the time at this task is performed by others; the suitability of 
synthetic rainfall series generation models as well as the question of which rainfall-runoff model is best may 
be analyzed.  

It is believed that the proposed study gives a quantitative assessment of the impact of future climate 
change in generation capacity of all the Brazilian scenarios of the La Plata river basin. This evaluation also 
allows estimating the evolution of the system's failure risk in the long-term horizon and may guide corrective 
measures in planning the system's expansion.  



It is intended, firstly, present results for three future scenarios (an optimistic, the most likely and a 
pessimistic), indicating the percentage variance of the guaranteed energy at a 5% level (criterion adopted by 
“Centrais Elétricas Brasileiras S/A – ELETROBRÁS”) in relation to values based on historical series of 
streamflows. Also should be presented the availability of the firm and secondary energy, calculated from the 
historical and pseudo-historical series of each scenario. The secondary energy can estimate the viable limit 
of additional thermal generation. It is intended to show, also, the relation between the guaranteed energy 
and the risk, which will allow estimating the risk's variance for each of the climate scenarios examined.  

Due to uncertainties about the future evolution of the system and the market for electric power, all 
analysis will be performed for a static configuration constituted by the power plants in the South-Southeast of 
Brazil. The extrapolation of this study's results to configurations including power plants planned for the future 
and a development of the market is only viable if the hypothesis of similar impacts of climate change for 
future systems is reasonable.  

This paper presents the development and validation of the Monthly Seasonal Multivariate 
Autoregressive Model SMMAR (1) that could be used to obtain the series of pseudo-historic rainfall to 
evaluate the impact of the climate changes in hydropower.  

2. CASE STUDY 

According to Bajay (2006) Brazil is the largest economy in Latin America and the 9th largest in the world 
when measured in terms of Purchasing Power Parity exchange rates. It is 10th largest electrical power 
consumer in the world and the largest electricity consumer in Latin America. Brazil is, therefore, a very 
important player in the world energy theater.  
 With a power generation installed capacity of 100,449 MW in 2007, Brazil is the largest electricity 
market in South America. The generation mix is 76.6% hydro, 21.3% conventional thermal and 2.1% nuclear 
(MME, 2008). 
 There are several large hydropower plants, with seasonal or multi-year storage reservoirs. Brazil 
has a large hydroelectric potential of 260,093 MW, but as of 2007 only 29.6% in actual operation and 2.2% 
under construction (MME, 2008). 
 There are approximately 52.2 million customers, 85% of whom are residential users. The 2007 
total electricity consumption was 483.4 TWh, distributed among the industrial users (46.7%), residential 
users (22.1%), commercial users (14.2%) and others (17.0%)." 

In Brazil, the system of production, transmission and distribution of electric energy has multiple 
owners and is interconnected from the east Pará to Rio Grande do Sul, forming the National Interconnected 
System – SIN (see figure 1).  

The SIN consists of the installation of over a hundred agents that includes: generators, transmitters, 
distributors and free consumers. This organization means that only a small portion (4.2% in 2006) of 
electrical production capacity of the country is outside of the SIN, in small isolated systems, located mainly in 
the Amazon region. 

The Operador Nacional do Sistema - ONS is Brazilian governmental agency responsible for the 
operation of the SIN. Its performance is targeted towards the search for technical solutions that produce the 
best outcome for society, respecting the interests of different actors (ONS, 2007).  

The South-Southeast interconnected system of Brazil was chosen as a case study of this research, 
since it is located in La Plata Basin. The figure 2 shows a schematic diagram of hydroelectric - SIN - South-
Southeast system. 

3. THE MODEL THEORY 

The theory of the model is presented below. It is used a multivariate autoregressive seasonal model applied 
to total monthly rainfall transformed by Box-Cox transformation.  

This model deals with seasonal by standardizing rainfall and considers non-stationarity in the 
correlation structure. Time-varying parameters are required to include seasonal variability in the correlation 
structure. Most widely used is the seasonal AR (1) (Salas and Pegram, 1977; Salas et al., 1980). 

The multivariate seasonal autoregressive model of order 1 will preserve all seasonal means of all 
variables in the state vector, all seasonal variances, all correlations among all elements of the state vector, 
and lag-one correlations between adjacent seasons and between all variables. As formulated here, the 
model will be able to handle normal and log-normal variables as well as mixed normal and log-normal or 
Box-Cox transformation elements in the state vector. The log-normal transformation is a special case of Box-
Cox transformation. Mine (1998) used the Box-Cox transformation in rainfall forecasting models. 

As the proposed model is valid for stationary processes with marginal normal distribution, the original 
series of monthly average rainfall should be submitted to a Box-Cox transformation of the first order, with the 
objective of obtaining data normally distributed.  

 



 

Source: (ONS, 2007) 

Figure 1 - Brazilian integrated system of electricity – SIN 

The Multivariate Normal Case 

Let 

( ) ( ) jijjjijjji BmXAmX  1  1  ,            ε+−=− −−          (1) 

Where jiX  is the state vector ( 1×n ) of random variables l

jix  , during the year i and season j at location ℓ 

with mean jm  . 

In detail, 
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For example, 1

 jix can be interpreted as the monthly rainfall at station 1 during year i and month j (season) 

and 1

jxm  as the mean value of this variable during the month j. 

jA  and jB are parameter matrices ( nn × ), one for each season. The ( 1×n ) vector of standard normal 

deviates is ji  ε , for year i and season j. 

Notation for Eq. (1) is simplified by introducing the zero-mean vector, ( )
jjiji mXZ       −= : 

.,1  ,        jijjijji BZAZ ε+= −           (3) 

The similarity between the model given by equation (3) and the multivariate stationary 

autoregressive lag-one is obvious; the only difference is the seasonal dependence of jA  and jB . The lag-

zero covariance for season j is 0 Mj . The covariance matrix between vectors 
jiZ

 
 and 1 , −jiZ  is 1 Mj

. 

Following a derivation analogous (Bras and Rodríguez-Iturbe, 1985) to the stationary models AR (1), it 
should be easy to arrive at the following results: 
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Figure 2 - Schematic diagram of hydroelectric - SIN - South-Southeast system 

The decomposition of T

jj BB  is accomplished using the procedures described in Bras and 

Rodríguez-Iturbe, (1985). Since every covariance function is seasonally dependent, so are the resulting 
parameters. 

It is now convenient notationally to redefine the vectors 
jiZ

 
and 

1  ,  −jiZ  as Y  and X , respectively. That is, 

vectorY , with n elements iy , i = 1… n, will represent the state vector at season j; and vector X  with 

elements ix , i = 1… n, will represent the state vector in the previous season j – 1. The model is now: 

 .      jjj BXAY ε+=            (6) 

The covariances of interest are now represented by equations (7): 
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Matrices xxS  , yxS  , xyS  and yyS  can be represented in terms of variances, standard deviations, and 

correlations as 
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where 
ixS   is the standard deviation of variable  ix , 

ji xxr  is the lag-zero correlation between stations 

(variables)  ix  and jx , and 
ji xyr   is the lag-one correlation between variables iy  and jx . 

The estimation of sample covariances should again follow the equations (11) and (12) below, to minimize the 

occurrences of inconsistent (non-positive definite) T

jj BB  matrices. 
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The Multivariate Log-Normal Case  

Consider the case where the elements of vectors X  and Y ,  ix and  iy , are random variables following a 

two-parameter log-normal distribution. Define the variables, '

 ix  and '

 iy , as follows: 
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'
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Thus, the original variables  ix  and  iy  are log-normally distributed with means 
ixm and 

iym , standard 

deviations 
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S  and 
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S , and the correlation coefficient among them given by 
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r  . 

Therefore, the transformed variables '
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 iy  are normally distributed with means '
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To preserve without bias the statistics of the original variables instead of the statistics of the 

transformed variables it is necessary to compute parameters of the distribution of '

 ix  and '

 iy  based on the 

parameters of the distribution of the original variables  ix  and  iy , using the expressions (15) given by 

Matalas (1967): 
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Solving the above system of simultaneous equations for '
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Thus, having the sample variance and correlation coefficient from the historical records, it is possible 
to compute the values of the transformed variables using Eqs. (16) through (20). 

The parameters of the transformed variables can be used to build the necessary autocovariance and 

cross-covariance matrices using the definitions given in Eqs. (8), (9), and (10). Generation matrices jA  and 

jB  are then available from the previously derived equations. 

In order to get the original variables from generated synthetic data, the user must perform the inverse 
transformation: 

)   exp ( '

'

 
ixii mxx +=            (21) 

)   exp ( '

'

 
iyii myy +=            (22) 



Mixture of Normal and Box-Cox Transformation Variables in the Autoregressive Model 

Variables such as rainfall are best described by different marginal distributions at each season. For example, 
the Nile River (Curry and Bras, 1978) exhibits alternating normal and log-normal distributions each month of 
the year. The multivariate autoregressive model allows the mixing of normal and Box-Cox transformation 
variables. 

Let  ix  and  iy  be the original random variables. Assume  ix is Box-Cox transformation distributed 

and  iy  is normally distributed as the set of equations (23): 
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The procedure to obtain the parameters '
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'
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S the log-normal variables was described in Bras 

and Rodríguez-Iturbe (1985) and made use of equations. (16) to (20). In this case, the problem is to obtain 
the correlation coefficient between the log-normal and the normal variables while preserving the parameters 
of the untransformed data. The necessary expression is given by Mejia et al. (1974). 

If   
ji yxr  is the correlation coefficient among the original variables and ''  
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r  the correlation coefficient 

between the transformed log-normal and the normal variables, the following relationship holds, 
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In order to illustrate how to build the required covariance matrices, consider the following example. 

Define the random vectors X  and Y  with three random variables each, 
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where the random variables 1x , 1y , 2y are normally distributed, and '

2x , '

3x , '

3y  are log-normally distributed. 

Then the corresponding covariance matrices will be done by equations (26) 
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The above matrices are again routinely used in the existing expressions to obtain jA  and jB . The 

user must remember to add means and perform required inverse transformations at the end of the 



computations. Since the elements of the sample covariance matrices are now individually evaluated and 
result from different nonlinear transformations, it is not unusual to obtain inconsistent estimates for the 

T

jj BB   matrix. 

Box-Cox Transformations 

Transformation to normality by taking logarithms is a property of the log-normal distribution; however, in 
practice, hydrological data follow a probability distribution that is known to be skew but not necessarily log-
normal. A more general transformation, of which the log transform is a particular case, is the family of Box-
Cox transformations, defined by equations (27) 
 
y={exp[λln(x)]−1}/λ,   where λ≠0          
             (27) 
y=ln(x),                       where λ=0, 
 
where λ  is to be estimated from the data. The estimation procedure consists of the following: 
i) Assume a range of values for λ : usually values in the range between 2 and -2 are appropriate. 
ii) For each value of λ  within the range, transform the y-sequence of data into z-sequence given by the 
above transformation.  
iii) For each value of λ , calculate the maximum of the log-likelihood function, say ( )[ ]λLlnmax . 

iv) Select the value of λ  for which this quantity is maximized.  
Clarke (1994) showed that the value of λ  which transforms the data sequence from the Rio Hercílio 

at Ibirama – Brazil is -0.055; clearly this value does not look very different from zero, and we can in fact test 
whether it differs significantly from that quantity. The procedure to do this is presented by the author in his 
book.  

4. MONTHLY SEASONAL MULTIVARIATE AUTOREGRESSIVE MODEL (SMMAR (1)) 

To achieve the objective of the paper, the following steps were considered:  
(1) Estimation of model parameters;  
(2) Generation of synthetic time series;  
(3) Analysis of the results.  

About to the first of the three items mentioned above we developed a computational method, which 
was prepared in Pascal Language and implemented in Lazarus. This computational method was divided into 
three modules that are interconnected through files. 

The first module aims at applying the method of moments to estimate the parameters of the Box-Cox 
transformation. This module prepares a file with the parameters (means, variances and correlation 
coefficients) for use in the second module. 

The second module prepares a file with the synthetic series generated, which can be used by the 
third module for the analysis of results. The file generated by the second module can be used as an input for 
other applications to be developed for rainfall-runoff modeling. 

The analysis of the results is to verify the conservation properties of the synthetic series compared to 
historical data used as input data for the first module. 

Parameters estimation of the Box-Cox transformation by the method of moments 

λ is a parameter that can be estimated by imposing the condition that the skew coefficient of z is zero 
(corresponding to the skew coefficient Ca(Z) of the normal distribution). 

The equation Ca(Z)=0 can be solved using the method of simulated annealing (Lee and El-Sharkawi, 
2008), estimating λ that minimizes |Ca(Z)|. This method is a technique that has recently received much 
attention for solving large optimization problems (Mckendall et al., 2006). This method was devised by 
analogy with the Metropolis algorithm (Metropolis et al., 1953), which was proposed to simulate problems of 
statistical physics by Monte Carlo method (Newman and Barkema, 1999). 

The use of the Metropolis algorithm can be described considering a system whose states are not 
degenerate with energies E1 <E2 <E3 <... En. For the Metropolis algorithm, the objective of the problem is to 
simulate the evolution of the system in thermal equilibrium which is at temperature T. It was initially thought 
that the system is in state j (energy Ej). The system may be carried over to any of the other states f.  

The feasibility of the change of state is analyzed by calculating the increase of energy ∆E=Ej–Ef and 
the Boltzmann factor exp[–∆E/(kT)], and k is the Boltzmann constant (1.380658 / 10 ²³ J/K ). We generate a 
uniform random number p (0≤p≤1) and compare it with the Boltzmann factor: (i) if p>exp[–∆E/(kT)], the 
proposal is rejected, the system remaining in state j; (ii) if p≤exp[–∆E/(kT)], the proposal is accepted, and the 
system will be changed to the state f. 



As a result, if ∆E<0, i.e. the energy of the system is reduced while transiting, the proposal is always 
accepted, and if ∆E>0, the proposal can be accepted with probability p, and if it is accepted, it means that the 
system energy will increase, and this looks a little different from the idea that a system always tends to 
decrease its energy, which strengthens and adds importance to the Metropolis algorithm.  

To make use of the Metropolis algorithm to solve general problems of optimization, should be known 
the following (Press et al., 1989): (i) description of the possible system configurations; (ii) a random 
generator to make configuration changes, these changes are options that should be part of the system 
settings; (iii) an objective function E (analogy with energy) whose minimization is the goal of the procedure; 
(iv) a control parameter (analogy with temperature) and an annealing scheme that the system can be 
conducted to the lowest value of the objective function. 

To solve the equation Ca(Z)=0 has been developed a computational method where the objective 
function was defined as |Ca(Z)|. The decision variable is the parameter λ. As initial solution is considered λ= 
0. 

The Metropolis algorithm is used to generate a set of points in a space of distributed variables with 
probability density function estimated by the Boltzmann factor. The parameter kT initially is defined as 0.5, 
and subsequently reduced by a factor of 0.9 in each of 100 steps considered. Thus, we will generate a 
sequence of points (generally identified by the vector λ) representing a random walk moving through space 
configured. 

The rules under which the random walk is performed in space are the following: (i) to consider that 
the random walk is at the point λn; (ii) to generate the point λn+1 applies an iterative process. The new point 
can be chosen at random from a range of small δ, around the point λn; (iii) by drafting a possible point λ*, 
this solution is accepted or rejected by considering the equation (28): 

r=exp[–∆E/(kT)]            (28) 

and ∆E=E(λn)–E(λ*), where E(λn) and E(λ*) are the values of the objective function in points λn e λ*, 

respectively; (iv) If r>1, then the point λ* is accepted (λn+1=λ*), if r<1, the point λ* is accepted with 
probability r. This is done by comparing r with a number u uniformly distributed in the interval [0,1], accepting 
λ* if u<r .When the point λ* is not accepted the random walk stays in the point λn (λn+1=λn) and (v) we 
generate the point λn+2 using the same procedure. 

The value of δ  must be chosen so that 1/3 to 1/2 of the configurations generated are accepted, 
otherwise the method becomes inefficient (Koonin and Meredith, 1993). If there is a lot of rejected 
configurations it means that the value δ is too large, otherwise if δ  is very small, there are many 
configurations accepted but the region explored by the method is small. 
Once determined the parameter λ, the parameters m e s, average and standard deviation of the transformed 
variable, respectively, can be estimated using the equations (29): 
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where K is determined by: 
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The system of equations (29) must be solved numerically. With the solution obtained the mean and 
the variance of the variable y (precipitation) are preserved. Analyzing the equations (29) we can conclude 
that there are solutions in the following cases: λ<−1 and λ>1. 

THE SMMAR(1) MODEL  

We developed a computational method for generating synthetic series of monthly precipitation. The 
model used was the multivariate seasonal monthly auto-regressive of order 1 - SMMAR (1), applied to the 
values of rainfall transformed by Box-Cox transformation. 

Implementation of SMMAR(1) model 

SMMAR (1) Model was calibrated with the existing monthly rainfall data for the period between Jan/1944 and 
Dec/2005 in nine stations presented in Table 1 and Figure 3. Depending on the analysis performed were 



prepared four versions of the SMMAR (1), which can be used to generate synthetic series of monthly 
precipitation for these stations.  

The proposed versions for the SMMAR (1) model can be classified according to the parameter of the 
Box-Cox transformation and covariance matrices between series of monthly rainfall (between stations for a 
given month and the previous month). 
SMMAR (1) model can be applied by using the following relationship: 
 
y(i)=m(i)+v(i),  i=1,...,k,           (31) 
 
where y(i) is Box-Cox transformation of the precipitation in a given month for the site i, in a collection 
(considered homogeneous) with series of rainfall for n sites; k is the number of sites (series of a given 
month) with values to be estimated; n−k number of sites with series from the previous month (values 
considered known); m(i), the average number of Y(i); and v(i) is determined by the expression: 
 
v(i)=[z−l(i+1,i)v(i+1)−...−l(n,i)v(n)]/l(i,i),  i=k,...,1,        (32) 
 
where z is a random number with zero mean and unit variance; l(i,j), with i=1,...,n and j=1,...,i, are elements 
of a lower triangular matrix obtained by Cholesky factorization of the inverse of the covariance matrix of Y; 
the values of v(i), for i=k+1,...,n, are known, can be initialized or have been determined by the SMMAR(1) 
model of previous month.  

The transformation of Box-Cox variable X, to variable Y, considered normally distributed, is defined 
by equation (27), where λ is a parameter that can be estimated by imposing the condition that the skew 
coefficient of y is zero (corresponding to the skew coefficient of the normal distribution). 

Table 1A (Appendix A) presents the parameters of the series of monthly precipitation transformed by 
Box-Cox transformation. The values of λ are estimated by the criterion of skew coefficient zero. The equation 
Ca(Y)=0 was solved using the method of simulated annealing (Lee and El-Sharkawi, 2008), estimated λ that 
minimizes |Ca(Y)|. This Table presents also the mean and standard deviation of Y, represented by m(Y) and 
s(Y), respectively, and also the results valid for λ=0 (log transformation). This result is used as the initial 
solution to the search performed by the method of simulated annealing. 
 
Table 1 Rainfall stations 
_____________________________________________________________________ 
No*. Code    Station name   STATE  Lat. Lon. 

(°)(′)  (°)(′) 
_____________________________________________________________________ 
 1  01847000  Monte Carmelo   MG   18 45 47 41 
 2  01848000  Monte Alegre de Minas  MG   18 52 48 52 
 3  02145007  Usina Couro do Cervo  MG   21 21 45 11 
 4  02047017  Cidade Nova    SP   20 32 47 25 
 5  02148128  Fazenda Barreirinho  SP   21 56 48 59 
 6  02349033  Tomazina   PR   23 46 49 57 
 7  02651000  União da Vitória  PR   26 14 51 04 
 8  02851014  Lagoa Vermelha  RS   28 12 51 32 
 9  02151035  Caiuá (Prefeitura)  SP   21 50 51 59 
No* − The serial number of the station identified in each row. 

DETERMINATION OF SMMAR (1) PARAMETERS  

Analyzing the results shown in Table 1A (Appendix A), it is found that from 108 results, 100 of them are 
located in the range 0.16<λ<0.95 and the rest (8 results) are negative and are in the range −1<λ<−0.026. 

To estimate the parameters m(Y) and s(Y) of the normal distribution transformed by Box-Cox 
transformation, by the method of moments should respect the restrictions: λ<−1 and λ>1. All results obtained 
for λ made it impossible to apply the method of moments, for not comply with these conditions. For this 
reason it was decided to estimate the parameters m(Y) and s(Y) by applying the method of moments for the 
normal distribution of rainfall transformed by Box-Cox transformation. The covariance matrices were also 
estimated in this way. The solution considered, does not preserve the properties of the series of rainfall on 
the synthetic series generated, but preserves the characteristics of rainfall transformed by Box-Cox 
transformation. 

We decided also to implement the model SMMAR (1) for the log-normal distribution (λ=0), with all 
parameters estimated by the method of moments. Applying this model the properties of precipitation series 
are preserved in the synthetic series generated. In the calibration of this version of SMMAR (1) model, the 
inverse of the covariance matrices for the months of June, July, August, September and December resulted 
in matrices that are not positive definite, making impossible the implementation of Cholesky decomposition 



(Press et al., 1989). Making small changes in rainfall with values equal to zero, as recommended by Fiering 
(1968), the matrices are no longer inconsistent and were obtained the Cholesky decomposition. 

 

Figure 3 – Rainfall stations 

In summary, the SMMAR (1) model was implemented for each month of the year for precipitation 
transformed by the logarithm and by Box-Cox transformation. Thus, for each model it is necessary a 
covariance matrix of 18 dimension for each month of the year (9 rainfall stations with the precipitation of the 
month and previous month). In the calibration phase of the SMMAR (1) model for the rainfall transformed by 
Box-Cox transformation, the inverse of the covariance matrices did not show inconsistencies. 

The analysis was completed to produce two new models SMMAR (1) for the logarithmic and the 
Box-Cox transformations, developed on homogeneous groups of stations established through principal 
component analysis (Mardia et al., 1979). This approach was applied in order to reduce the size of the 
covariance matrices. For each matrix of correlations between monthly precipitation (one for each month of 
the year), with 18 dimension, we applied the principal component analysis. So 26 groups were determined, 
with dimensions ranging between 2 and 12, and the dimensions to 24 groups are smaller than 10. 

The stations belonging to each group, according to the month of the year are listed in Table 2. With 
the exception of month 3, where there is only one group, for the other months there are at least two groups. 
For each model SMMAR (1) the calibrations were performed with 26 matrices, with dimensions smaller than 
12. By reducing the size of the matrices, we avoid the occurrence of inconsistencies in the implementation of 
the SMMAR (1) model with the log-normal distribution. However, with the reduction in the size of matrices to 
relax for the preservation of some covariances of monthly precipitation (between stations and / or between a 
lag one monthly) that by the method of principal components analysis can be considered negligible. 
 

RESULTS OF SMMAR(1) MODEL 

A set of 2000 monthly synthetic series with 62 years (historical series size in the observation period between 
01/1944 and 12/2005) were generated, for each of the 9 rainfall stations used in this project. SMMAR(1) was 
applied, which considers the Box-Cox transformation for each month of the year. 

By definition, the SMMAR(1) model generates synthetic series of monthly rainfall preserving the 
characteristics of the historical series. For this reason, to analyze the generated series quality, significance 
tests were applied to evaluate the characteristics of synthetic annual series. 

The estimated parameters are: i) The long term annual average rainfall; ii) the variance of annual 
rainfall; iii) the 18 dimension correlation matrix, determined between the rainfall annual series (9 rainfall 
stations with precipitations in the current year and previous years). Tables 1B, 2B and 3B (Appendix B) 
present for the three parameters the values of α100  (%), where α  (%) is the significance test level. 
Probabilistic distributions valid to each parameter were used to estimate α . 

With the tests results, we can verify: i) the long term annual averages rainfall are preserved in all 
stations with α>9% and in eight stations with α>16%; (ii) the variances of annual rainfall are preserved in four 
stations with α>7%, in one station with α>4%, in two stations with α>1% and in another two stations with α



<1%; (iii) of the 153 calculated correlation coefficients, 130 are preserved with α>10%, 14 are preserved with 
α>6%, four coefficients with α>1% and for only five coefficients, α<1%. 
 
Table 2 Groups established by analysis of the principal components between of monthly rainfall  
 

Month Ns Identification number of the rainfall 
series (Ni) 

 
Ns Identification number of the 

rainfall series (Ni)  
1 8 1 2 3 4 5 8 10 14      3 6 7 9        
2 7 2 3 8 10 11 15 18       8 1 4 5 6 7 9 12 14   
3 12 1 2 3 4 5 6 7 8 9 10 11 12             
4 5 2 7 8 9 10         6 1 3 4 5 6 15     
5 7 2 5 6 12 14 15 16       2 9 10         
5 4 1 3 4 18          5 7 8 11 13 17      
6 6 1 2 3 4 10 12        8 5 6 7 8 9 11 13 14   
7 9 1 2 3 4 5 6 7 14 16     3 9 11 18        
7 6 8 10 12 13 15 17                   
8 8 1 3 5 6 7 8 9 10      10 2 4 11 12 13 14 15 16 17 18 
9 8 1 6 7 9 10 11 12 13      6 3 4 14 15 16 18     
9 4 2 5 8 17                     

10 9 1 2 3 4 5 6 7 8 9                
11 9 1 6 7 8 9 12 13 14 15     6 2 3 4 5 10 11     
12 7 2 3 6 7 8 9 10       6 1 4 5 15 17 18     

Note Ns − Number of series of monthly precipitation in homogeneous group  
Ni − Identification number of the rainfall series, when 
Ni≤9 corresponds to the serial number (No) of rainfall station 
from table 1-B (No = Ni), when Ni> 9, identifies the monthly series in  
the previous month (lag 1) of the station with serial number No = Ni - 9. 

CONCLUSION 

Due the aforementioned results, it is concluded that SMMAR(1) model can be considered as totally 
satisfactory to produce annual and monthly total rainfall synthetic series, for all the stations considered in this 
paper.  
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Appendix A - Parameters of Box-Cox transformed monthly precipitation series  

Table 1A - Parameters of monthly precipitation series transformed by Box-Cox transformation 
 

Code Month 
Log transformation (L=0) Box-Cox transformation (L≠0) 

| Ca(y) | m(y) s(y) L | Ca(y) | m(y) s(y) 

1847000 1 6.3193631 5.359191 1.681039 0.480060 0.0000003 28.654584 9.328324 
 2 3.8003748 4.678590 2.583924 0.647140 0.0014031 45.952351 21.539790 
 3 4.4852159 4.665891 2.150873 0.577460 0.0004896 31.321211 13.381652 
 4 3.7073282 3.634945 1.914335 0.424870 0.0007465 10.662180 5.181721 
 5 1.5343964 1.757532 3.221257 0.416030 0.0018576 5.606679 4.745040 
 6 0.2262411 -1.053180 3.410711 -0.252120 0.0002761 -3.138835 4.758248 
 7 0.2059275 -1.078630 3.531672 -1.000000 -0.0021301 42.023526 42.492477 
 8 0.2091887 -1.027562 3.355742 -0.784160 -0.0009373 16.785751 17.663430 
 9 1.9423432 2.530566 2.594501 0.418130 0.0010437 7.209995 5.349718 
 10 5.7898144 4.489340 1.475407 0.532980 0.0000636 21.405394 7.756070 
 11 6.3088619 4.978044 1.564231 0.545550 0.0005524 29.691242 9.971673 
 12 6.8107417 5.330294 1.572723 0.731220 0.0000000 78.768537 26.241126 
         
1848000 1 0.1753265 5.592276 0.422796 0.178910 0.0002059 9.655322 1.146388 

 2 1.5181980 5.229475 0.560823 0.733070 0.0006379 66.322174 22.709902 
 3 0.9772095 5.144749 0.541655 0.734730 0.0003084 62.588886 21.785779 
 4 4.5793995 4.019506 1.505941 0.459840 0.0011206 13.420524 5.517202 
 5 2.4408504 2.893103 2.001220 0.382260 0.0017718 6.856875 4.244059 
 6 0.4756464 0.101904 3.534291 0.211740 0.0011120 1.381262 3.518633 
 7 0.1854423 -0.887997 3.501005 -0.266200 0.0001308 -3.125995 4.879091 
 8 0.1654474 -0.881519 3.707904 -0.694190 -0.0009675 14.790972 15.880922 
 9 1.8569123 2.524440 2.802879 0.688450 0.0001480 15.881888 11.477389 
 10 0.8947556 4.793390 0.620151 0.615100 0.0004930 31.474187 11.009120 
 11 0.2104654 5.257736 0.415113 0.180490 0.0001326 8.810824 1.068138 
 12 0.3959906 5.500518 0.335704 0.437710 0.0002744 23.362368 3.677304 
         
2145007 1 0.7939622 5.465839 0.520554 0.739570 0.0002432 80.992546 27.811256 

 2 1.0375728 5.171440 0.625667 0.946290 0.0001807 1 61.569704 74.005448 
 3 0.3786985 5.027965 0.461114 0.224730 0.0005213 9.397490 1.412993 
 4 0.7288412 3.976365 0.711963 0.278450 0.0007107 7.481682 2.077438 
 5 2.8892567 3.112720 1.805576 0.424670 0.0005142 8.146277 4.622828 
 6 0.9282854 0.979754 3.351073 0.359730 0.0012626 3.547621 4.199459 
 7 0.5310610 0.271730 3.581951 0.274980 0.0009602 2.054459 3.791725 
 8 0.8704639 0.672508 3.336970 0.268670 0.0016651 2.272368 3.519218 
 9 2.2550996 2.857084 2.907018 0.448430 0.0003661 9.647205 6.285108 
 10 1.6339190 4.584586 0.606638 0.823860 0.0005342 57.340325 22.453600 
 11 0.3892138 5.159874 0.520243 -0.070930 0.0024517 4.314408 0.359320 
 12 0.3294423 5.534166 0.520458 -0.074320 0.0018218 4.530594 0.343700 
         
2047017 1 0.4704109 5.674215 0.314595 0.508040 0.0004413 33.633394 5.516794 

 2 1.5814941 5.361621 0.589433 0.700240 0.0002750 64.047646 21.943620 
 3 0.2817746 5.197695 0.426196 0.255990 0.0002089 10.959578 1.600787 
 4 1.1533972 4.269883 0.765012 0.532080 0.0007927 17.705471 6.729915 
 5 2.8768950 3.322391 1.923707 0.465450 0.0010290 10.403270 5.920510 
 6 1.0180254 1.237918 3.348326 0.435490 0.0009819 4.978702 5.074941 
 7 0.7227835 0.806016 3.232294 0.273610 0.0009327 2.498432 3.769280 
 8 0.6277689 0.555502 3.469357 0.262190 0.0000320 2.263754 3.827412 
 9 2.3160155 3.134723 2.656936 0.475940 0.0016308 11.560110 7.416688 



 10 0.0803321 5.013592 0.542240 -0.026000 0.0014848 4.697209 0.475823 
 11 0.0991230 5.330110 0.372082 0.162210 0.0001722 8.497553 0.882284 
 12 1.1476025 5.582724 0.388864 0.689220 0.0006235 68.839955 16.874255 
         
2148128 1 1.2204017 5.318549 0.569724 0.750700 0.0006482 76.716036 27.547319 

 2 0.3664328 5.191018 0.521170 0.296100 0.0000179 12.514535 2.392228 
 3 0.6779136 4.747619 0.600707 0.221440 0.0004402 8.517725 1.678648 
 4 2.9750010 3.467787 1.999019 0.525980 0.0005282 13.548511 7.666010 
 5 2.7725588 3.252533 2.339366 0.434320 0.0014061 9.940159 5.788369 
 6 1.8030332 2.360990 2.906244 0.454250 0.0013332 7.843618 5.964460 
 7 1.1258860 1.308811 3.253342 0.257300 0.0013771 3.124318 3.850079 
 8 0.7002651 0.776492 3.673323 0.319370 0.0003672 3.339571 4.513460 
 9 2.9101109 3.521883 1.624139 0.538180 0.0006193 13.520529 7.517169 
 10 0.6827180 4.622825 0.508081 0.458690 0.0000018 16.465347 4.071380 
 11 2.9910594 4.644360 0.779305 0.465930 0.0008633 17.499023 5.362348 
 12 0.3609473 5.238983 0.442586 0.249120 0.0006214 10.879997 1.615972 
         
2349033 1 0.8687163 5.229799 0.499188 0.404890 0.0007280 18.456369 3.970501 

 2 1.0651076 4.938956 0.636842 0.613040 0.0002098 34.383667 11.974723 
 3 0.4312758 4.817958 0.510165 0.335640 0.0003464 12.248085 2.525437 
 4 4.0805393 4.021977 1.560331 0.554320 0.0013323 18.308334 8.541584 
 5 4.1721175 4.077790 1.563754 0.361090 0.0000278 10.499667 4.461986 
 6 3.5942491 3.911189 1.603288 0.532660 0.0007556 16.396195 8.230452 
 7 2.6070115 3.195320 2.628986 0.429020 0.0016806 10.105902 6.072232 
 8 2.2424340 2.998327 2.405628 0.499150 0.0007184 10.919889 7.295228 
 9 0.7933689 4.327763 0.845106 0.410500 0.0006757 12.772412 4.705025 
 10 0.5357068 4.827226 0.542653 0.357390 0.0005416 13.197423 2.973251 
 11 5.7983097 4.427254 1.422779 0.637880 0.0014011 29.224667 11.056759 
 12 0.5312498 4.997251 0.464191 0.422200 0.0003848 17.530345 3.736735 
         
2651000 1 0.7516299 5.012819 0.486906 0.593930 0.0003467 32.686183 9.090260 

 2 1.3813989 5.009812 0.544311 0.756420 0.0006896 61.495844 21.193453 
 3 0.4015388 4.812256 0.509299 0.357390 0.0003818 13.080082 2.798225 
 4 1.4078514 4.511486 0.833150 0.259190 0.0025304 8.832413 2.472924 
 5 0.6139751 4.598691 0.877723 0.340970 0.0002747 11.739578 4.041232 
 6 1.4879697 4.712455 0.761504 0.753620 0.0003390 51.260124 22.466030 
 7 1.1025503 4.577532 0.823443 0.283470 0.0008226 9.715070 2.818391 
 8 0.9700424 4.435699 0.871449 0.397400 0.0001174 12.961817 4.698800 
 9 0.5924168 4.931120 0.630008 0.427740 0.0002286 17.604600 5.014737 
 10 0.2073749 5.146172 0.454904 0.235520 0.0004370 10.103211 1.521235 
 11 1.2768009 4.813408 0.619290 0.600290 0.0001640 30.142880 9.996949 
 12 0.4111784 4.987509 0.509669 0.267990 0.0007472 10.601421 1.913171 
         
2851014 1 0.3258201 5.089203 0.558614 0.263470 0.0003940 10.867370 2.112445 

 2 0.8576770 4.958595 0.605431 0.695910 0.0000580 47.565998 17.712930 
 3 0.7285735 4.727738 0.601162 0.383010 0.0007957 13.761262 3.529627 
 4 2.5125156 4.553465 1.048034 0.582740 0.0010005 25.969541 11.261698 
 5 1.7485729 4.657253 0.972333 0.570630 0.0011224 26.332364 11.272929 
 6 4.0265446 4.773395 0.981558 0.596880 0.0010862 30.381683 11.335228 
 7 2.0565471 4.837057 0.785248 0.264330 0.0004039 10.066809 2.519741 
 8 2.3310016 4.765468 1.078548 0.582770 0.0002468 29.863226 13.086968 
 9 0.6688609 5.184278 0.527101 0.471120 0.0002019 23.012052 5.826530 
 10 0.3162138 5.224769 0.493854 0.255800 0.0003613 11.085744 1.861556 



 11 1.2218026 4.772438 0.669702 0.454490 0.0009718 17.866900 5.364550 
 12 2.3103425 4.905425 0.715652 0.525670 0.0008263 24.613838 7.705147 
         
2151035 1 0.6990493 5.148065 0.668286 0.320110 0.0002626 13.467090 3.354696 

 2 1.4010966 4.850543 0.790256 0.461730 0.0001886 19.367535 6.566269 
 3 5.6605243 4.447254 1.439823 0.614820 0.0005643 27.574916 10.901806 
 4 3.5000138 3.719105 2.016132 0.478260 0.0005328 13.303194 6.678317 
 5 3.4216159 3.754710 2.052103 0.443510 0.0003388 12.371004 6.384190 
 6 1.9556380 2.580352 2.989109 0.373940 0.0003638 7.183628 5.368737 
 7 1.2378174 1.622520 3.450602 0.311830 0.0011648 4.484576 4.625186 
 8 0.9123537 1.151510 3.586246 0.301560 0.0012410 3.683434 4.515031 
 9 3.1725336 3.539110 1.944404 0.457850 0.0008233 11.420409 6.265944 
 10 0.7821386 4.603464 0.787281 0.348330 0.0009268 11.908756 3.728820 
 11 5.0419424 4.398756 1.653284 0.334660 0.0000005 11.141970 4.119752 
 12 0.6386761 4.941557 0.696518 0.283520 0.0010627 11.061150 2.738792 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix B – Test results  
 
Table 1B - Long term annual average 
 

Station Annual 
Average 

100-α 
(%) 

Station Annual 
Average 

100-α 
(%) 

1 1461.57 76.58 2 1515.32 90.77 
3 1483.18 79.34 4 1710.91 78.65 
5 1307.36 77.17 6 1428.24 70.33 
7 1780.93 65.65 8 1957.72 67.91 
9 1290.05 83.56    

 
Table 2B - Annual variance 
 

Station Annual 
Variance 

100-α  
(%) 

Station Annual 
Variance 

100-α 
(%) 

1 169419.9 92.9 2 54853.93 95.64 
3 258161.4 99.9 4 92036.31 99.39 
5 58842.7 91.47 6 53846.15 69.84 
7 120867.3 99.8 8 193348.4 99.95 
9 82778.9 55.36    

 
Table 3B - Correlation coefficients 
 

Stations Correlation 
Coef 

100-α  
(%) 

Stations Correlation 
Coef 

100-α  
(%) 

2 1 0.099192 20.9 3 1 0.222375 46.97 
3 2 0.428221 58.45 4 1 0.261139 83.46 
4 2 0.51431 78.08 4 3 0.35497 3.31 
5 1 0.270424 89.53 5 2 0.211369 62.17 
5 3 0.190441 48.29 5 4 0.239694 39.66 
6 1 0.228727 92.34 6 2 0.164898 69.17 
6 3 0.14496 54.4 6 4 0.185292 46.51 
6 5 0.444469 59.47 7 1 -0.0211 53.94 
7 2 0.082175 75.81 7 3 0.076762 66.65 
7 4 0.244876 88.32 7 5 0.233935 58.45 
7 6 0.578717 84.45 8 1 0.027888 80.61 
8 2 0.040055 86.38 8 3 0.022761 69.29 
8 4 0.177137 91.52 8 5 0.158116 61.42 
8 6 0.376658 75.39 8 7 0.616476 77.03 
9 1 0.07957 78.39 9 2 0.253193 83.02 
9 3 0.025509 38.75 9 4 0.283776 62.44 
9 5 0.23555 21.04 9 6 0.336053 18.6 
9 7 0.42026 84.06 9 8 0.230676 72.16 

10 1 -0.13726 22.21 10 2 0.094954 78.47 
10 3 -0.03738 41.77 10 4 0.077332 76.97 
10 5 -0.02653 37.3 10 6 -0.01263 49.13 
10 7 0.226694 95.47 10 8 0.335764 99.41 
10 9 0.247001 91.34 11 1 -0.09268 29.69 
11 2 -0.13075 20.09 11 3 -0.13014 23.33 
11 4 -0.01321 49.5 11 5 -0.21938 4.59 
11 6 0.118464 77.46 11 7 0.17382 89.88 
11 8 0.180617 89.2 11 9 0.142097 82.29 
11 10 0.107754 22.9 12 1 -0.1367 29.24 
12 2 -0.04896 44.61 12 3 -0.08968 30.13 



12 4 0.050471 55.93 12 5 -0.25484 0.62 
12 6 0.009083 35.73 12 7 0.119851 77.23 
12 8 0.319599 97.77 12 9 0.042589 51.87 
12 10 0.436736 95.48 12 11 0.483219 77.64 
13 1 -0.14816 16.04 13 2 -0.00857 45.34 
13 3 -0.10937 13.77 13 4 0.075094 62.84 
13 5 -0.17548 4.62 13 6 -0.01446 28.24 
13 7 -0.07951 20.75 13 8 0.204162 92.95 
13 9 -0.0565 17.56 13 10 0.265508 84.87 
13 11 0.520647 80.06 13 12 0.630252 85.93 
14 1 -0.03592 41.6 14 2 -0.01386 55.64 
14 3 0.157488 89.98 14 4 0.100028 75.57 
14 5 -0.09303 25.07 14 6 -0.0027 57.56 
14 7 0.178081 92.45 14 8 0.336955 99.79 
14 9 -0.1647 11.96 14 10 0.27634 90.67 
14 11 0.207724 60.75 14 12 0.29858 80.62 
14 13 0.252489 43.64 15 1 -0.19035 8.77 
15 2 -0.019 51.38 15 3 -0.2094 8.5 
15 4 0.061501 71.26 15 5 -0.02185 50.96 
15 6 0.162075 92.8 15 7 0.296692 99.29 
15 8 0.36431 99.83 15 9 -0.04855 47.79 
15 10 0.234998 93.24 15 11 0.158892 67.39 
15 12 0.201405 69.9 15 13 0.196917 50.08 
15 14 0.451187 61.44 16 1 -0.30271 0.78 
16 2 -0.01076 42.88 16 3 -0.20884 6.6 
16 4 -0.0443 43.4 16 5 -0.02461 50.23 
16 6 -0.0666 37.25 16 7 0.113281 85.86 
16 8 0.154688 91.09 16 9 -0.21525 6.02 
16 10 -0.0139 56.02 16 11 0.08967 77.78 
16 12 0.204622 92.15 16 13 0.259174 90 
16 14 0.250027 64.66 16 15 0.587481 87.28 
17 1 -0.19752 8.44 17 2 0.020009 61.74 
17 3 -0.26577 3.08 17 4 0.02694 65.32 
17 5 0.019867 60.22 17 6 -0.17252 11.26 
17 7 -0.04442 38.61 17 8 0.093853 82.08 
17 9 -0.12389 16.67 17 10 0.038217 82.38 
17 11 0.036319 84.59 17 12 0.038582 73.74 
17 13 0.19611 93.54 17 14 0.176737 67.8 
17 15 0.387084 79.1 17 16 0.628003 81.3 
18 1 -0.1385 18.22 18 2 0.009958 47.08 
18 3 -0.00099 52.16 18 4 0.118118 79.11 
18 5 0.152307 91.48 18 6 0.216403 98.59 
18 7 0.31887 99.73 18 8 0.194925 93.41 
18 9 0.075722 77.58 18 10 0.093963 82.04 
18 11 0.239258 80.32 18 12 0.044326 44.36 
18 13 0.307509 70.24 18 14 0.2606 28.13 
18 15 0.349667 22.24 18 16 0.4435 88.29 
18 17 0.270674 82.17     

 


