Understanding and Guiding Complex Systems to Achieve Multiple Societal Goals

James W. Jones Distinguished Professor Emeritus National Academy of Engineering Member University of Florida Email: jimj@ufl.edu

June 7, 2021 IWRA Conference One Water, One Health: Water, Food and Public Health in a Changing World

Agricultural & Biological Engineering Department

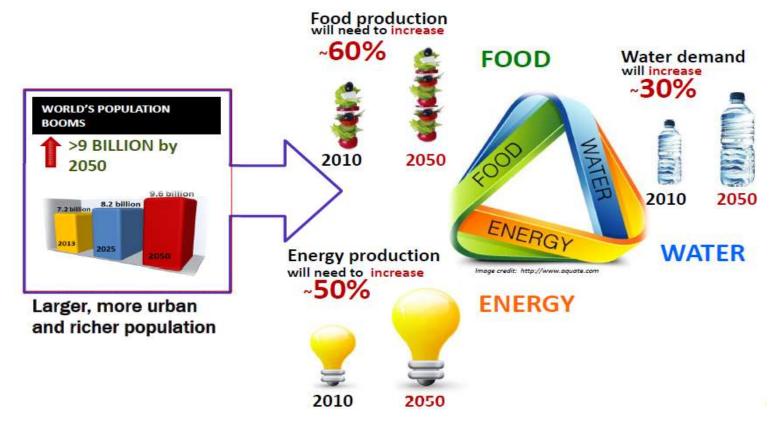
Purpose

- Discuss major societal goals as complex systems, such as water, food, one health
- Emphasize the necessity of using convergent systems approaches to understand and transform them
- Discuss past & current initiatives that demonstrate these characteristics

Complex Systems

- Complex systems differ from complicated systems (Ottino, Nature, 2004)
- Complex systems have emergent behavior, some of which may be unintended, unwanted
- Decomposing a system and analyzing sub-parts do not necessarily imply the behavior of the whole
- Example complex systems: ecosystems, economies, world-wide web, spread of viral infections, **One Health?**
- Grand challenges, Societal goals

CONNECTING HUMAN, ANIMAL, AND ENVIRONMENTAL HEALTH

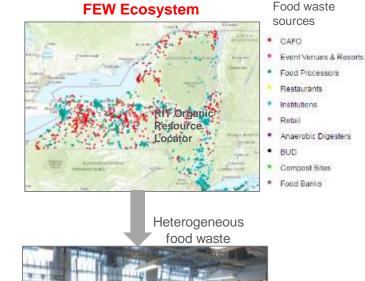

SDGS ICONS DOWNLOAD AND GUIDELINES

UNIVERSITY OF FLORIDA

https.ii.sustainabledevelopment.un.org.iq.menu=1300

NSF & USDA-NIFA INFEWS* Initiative (2016-2020)

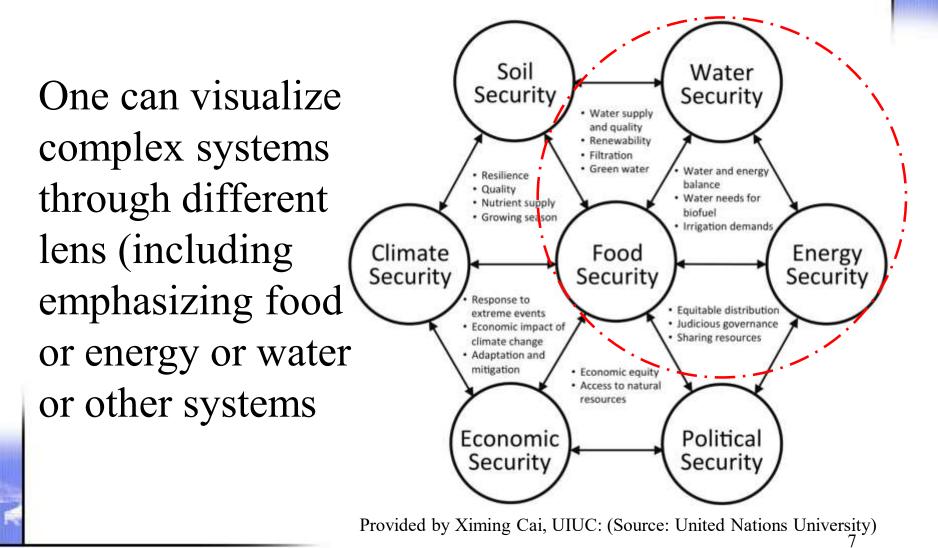
Food, Energy, and Water Systems: Challenges for 2050


*Innovations at the Nexus of Food, Energy, and Water Systems (INFEWS); Source - NSF

ENIVERSITY OF

Example - INFEWS/T3: Managing Energy, Water, and Information Flows for Sustainability across the Advanced Food Ecosystem

Motivation: Up to 40% of produced food is not consumed by humans, wasting energy and water resources **Goal:** Create and evaluate novel, integrated *policy*, *waste management*, and *technology* solutions to reduce environmental impacts of food waste, while maximizing efficient use of energy and water



Photos by Tom Trabold, RIT

Research Focus: New York State

Credit: Callie Babbitt (PI), RIT (cwbgis@rit.edu)

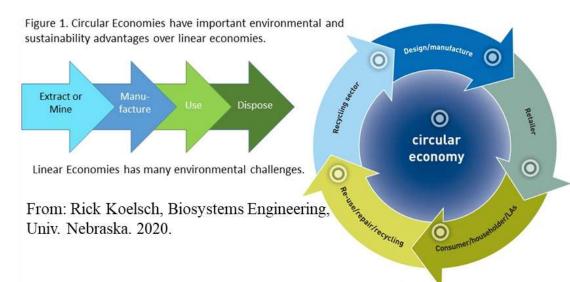
FEW systems interact with other systems

FLORIDA

Food & Agricultural Systems

- Food and other agricultural products are essential for human survival, a major **national security issue**; demand is increasing
- Agriculture uses considerable **water** and **energy**, is highly sensitive to **climate**, contributes to climate change, may negatively impact the **environment** and **biodiversity**, and contributes to **human health** outcomes, provides **economic** opportunities
- Agricultural and food systems have adapted to climate, their physical, social, cultural, economic, and policy environments to provide affordable food to meet rapid growth in demand
- But they are <u>complex systems</u>, vulnerable to changes in factors noted above and to shocks (weather extremes, pandemics, pest outbreaks, policy changes, markets)

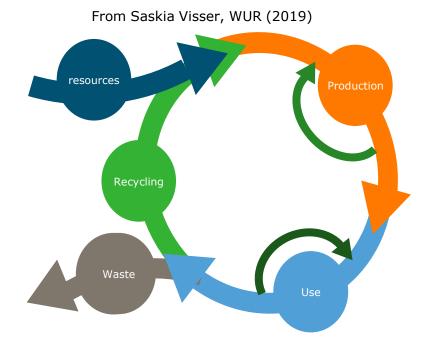
Need to Transform Food & Agricultural Systems (FAS)


- Recent NASEM* reports assessed problems & emphasized that current FAS are unsustainable
- They concluded that **continued incremental advancements to existing FAS systems are not adequate**; **transformations are necessary** and should be a high priority

- However, the reports did not provide insights on what systems approaches should be or on how to transform existing FAS
- Current food systems are mostly linear (E. MacArthur F., 2019)
- **Transformative FAS designs are needed** that account for complexities of multiple interdependent sub-systems and their interactions with other societal functions and the environment

Circular Economy Systems Concepts Can Guide Transformations

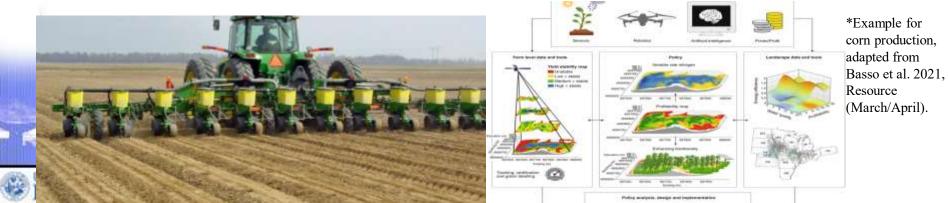
- **Circular economy** a systematic approach to economic development that benefits businesses, society, and the environment.
- **Inspired by nature**. Waste does not exist in nature one organism's waste is food for another.
- Circular Economy Principles help guide transformations
 - design out waste and pollution,
 - keep products & materials in use, (reuse, repair, refurbish, recycle)
 - regenerate natural systems
- Sustainability of Food Systems – outcome of circular systems



Creating Circular FAS

- Define system; identify its components, boundaries, scale, and environment
- Specify indicators and metrics for analysis of alternative solutions
- Identify losses, inefficiencies, and wastes from system and their impacts.
- Envision solutions that can potentially achieve circularity, sustainability, and resiliency
- Consider future transformations over time, with near- and longer-term solutions, for projected climate and other boundary conditions
- Use data and models to predict system performance, including tradeoffs among the objectives
- Field to market systems: inputs, production, processing/packaging, transport, consumption and wastes

Key Resources, Cycles in Food & Agricultural Systems


- Energy
- Water
- Carbon
- Nitrogen
- Phosphorus
- Food, product mass

*Create Circular Production Subsystems

R

Optimize (2020-2025)	Replace/Reduce (2025-2035)	Redesign (2035-2050)
Digital Agriculture Spatially variable rate Fertilizer, Seeds, Agrochemicals	New traits/genetics Root systems to optimize water and nitrate use efficiencies. Traits resistant to diseases	New Processes Electrification of Haber-Bosch Process
Precision Conservation Idle unprofitable land for C credits, nutrient reduction, biodiversity, use "green" E,N,W inputs	Renewable energy On farm energy generation for field operations and drying, mitigation	New Sources Biological Nitrogen Synthesis Smart Systems
Regenerative Agriculture and Soil Health Practices Crop rotation, Cover crops; No	Recycle Collect drainage water for fertigation, wastes for nutrients	Autonomous electrical robots for agronomic practices
tillage.	Revise Incentives	

Professional Societies (ASABE, Others)

- Professional society of agricultural & biological engineering (ASABE) has a long history of collaboration with other engineering and science disciplines across public & private sectors.
- In 2020, ASABE adopted Circular Economies for Food & Agricultural Systems as a long-term priority goal
- Studied different FAS; published special issue of RESOURCES Mar/Apr 2021; planned annual meeting program (July 12, 2021)
- Building collaboration among professional societies (ASABE, Tri-Societies, AAEA, IFT, ADSA, AIChE, others)
- National Academy of Engineering efforts

FUBLISHED BY AMERICAN SOCIETY OF AGRICULTURAL AND BIOLOGICAL ENGINEERS 😹

Mar/Apr, 2021 Issue

What about Systems addressing Water, Food, and Health?

- Societal Goals imply need for use of Systems Approach, considering Complex Systems concepts
- Convergent systems approaches are needed to adequately understand and guide them to achieve multiple goals
- Strong interest by multiple disciplines, businesses, science and engineering academies
- What about water, food, health systems? SDGs? Addressing climate change? etc?

