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• GW provides a reliable and suitable water source:

- Often widely present

- In-built distribution and storage

- All-year availability and drought resilience

- Individual access and management possible

- Little loss from evaporation

- Normally a safe source of drinking water

• Increasing demand for drinking water and food

• Better low-cost efficient pumps and wells

• Better knowledge on GW resources

• Increasing attention from governments, private sector and donors

Drivers of
groundwater development



Climate change impacts
on groundwater

• Groundwater provides resilience and a critical 

adaptation mechanism if well-managed

• In arid areas, GW recharge will be increasingly 

episodic and focused (Cuthbert et al, 2019)

• Most vulnerable areas: large coastal cities, tropical 

deltas, and small islands (due to seawater intrusion, 

subsidence and dense populations)

• In humid areas, like Denmark, groundwater levels 

are rising

• Groundwater depletion and flooding will co-exist



Challenges

• Exact impacts are still not well understood

• Impacts on both quantity and quality important

• Groundwater is the ‘memory’ of climate, and so 
understanding groundwater in the context of 
climate (historic and future) is key

• Climate footprint on groundwater is 
increasingly confounded/overshadowed by 
human impact



The quadrant of GW and Climate 
Change impacts
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Cuthbert et al., 2019

Research in Sub-Saharan Africa



Anomalies during El Niño event
2015-2016

Large-scale climate anomalies over the study region for Oct-Apr 2015–2016. (a) SPEI-7. (b) 
Anomalies of the 80th percentile of daily TRMM rainfall (mm day-1).

Kolusu et al., 
2019
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Scanlon et al., 2016

Indirect impact on GW quantity
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Contamination impacts from 
flooding in Botswana
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Climate change impacts on GW quality 
Botswana case
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Human health risk propagation through 
food trade of arsenic in GW-irrigated 
crops

Alam et al., 2020



Alam et al., 2020

Currently, 4.7 MMT/yr of 
contaminated rice is traded globally, 
~10.4% of global rice trade.

In future scenarios, the area grown 
under GW-irrigation in hazard areas 
may expand from 10.6 to 23.2 Mha. 

Human health risk propagation through 
food trade of arsenic in GW-irrigated 
crops



Groundwater and climate change 
adaptation

http://gripp.iwmi.org/natural-infrastructure/



Underground transfer of floods

Pavelic et al., 2020



Time to GW depletion reversal
Jaipur:

Recharge: 100 mm/year (Bhanja et al., 2019)

GW level decline (1995-2010): 21.6 m
(http://www.imedpub.com/articles/spatiotemporal-characteristics-of-ground-
water-level-fluctuation-in-jaipur-urban-area-rajasthan-india.php?aid=10090)

Average porosity: 0.4

Time to recover depleted aquifer: 86.4 years

At India scale (Sutanudjaja, 2019)::

Recovery time: 9.6 years
Bhanja et al., 2019

http://www.imedpub.com/articles/spatiotemporal-characteristics-of-ground-water-level-fluctuation-in-jaipur-urban-area-rajasthan-india.php?aid=10090


Possible ways forward

https://cgspace.cgiar.org/handle/10568/103496https://wle.cgiar.org/news/groundwater-critical-our-future
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GRIPP objective

Sustainable groundwater management for livelihoods, food security, climate 
resilience and economic growth

http://gripp.iwmi.org/
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Thank You

Karen Villholth
k.villholth@cigar.org
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https://www.groundwaterstatement.org/
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