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Abstract 

Water quality has been the principal limiting factor to water availability. The assessment of short 

and long-term water quality changes is a challenging problem. During the last two decades, there 

has been an increasing demand for monitoring water quality of many water bodies by regular 

measurements of various water quality parameters. The result has been the gradual accumulation 

of reliable water quality records and the examination of these data for trends (Hirsch et al., 

1991). Without such information of the trend detection of the water bodies, effective water quality 

management remains impossible. 

The goal of this research is to identify water quality trends in Egyptian drains.  The proposed 

analysis aims at determining how and to what degree several water quality parameters are 

changing, and characterizing the function and response of the drains to seasonal variability 

besides the correlation of load-discharge relationships and concentration-discharge relationship 

where the load-discharge relationships showed better correlation than that of concentration-

discharge relationships.  

Although several parameters are examined, particular emphasis is given herein to ascertaining 

trends in nutrients, organic matter and physical parameters. An examination of a vital drainage 

catchement in the eastern region of Egypt’s Nile Delta is conducted to describe the short-term 

trends. The data of five water quality variables (NO3, P, BOD, COD, TSS) and the discharge 

monitored on a monthly basis for the period August 1997-December 2002 were selected for this 

analysis.  

This study examines the time series of monthly values of water quality parameters and the 

discharge using statistical methods and the existence of trends and thus1presents the evaluation 

of the best-fitted trend models. Trends are detected using the regression analysis of the variables 

involved. Due to the wide variation over time in the statistical tests for nutrients, organic matter 

and physical parameters, the trend varied as for BOD, COD, TSS and NO3 concentrations it was 

downwards following the quadratic equation while the concentration of P showed no trend. 

1 INTRODUCTION 

During the last two decades, there has been an increasing demand for monitoring water quality of 

many water bodies by regular measurements of various water quality parameters. According to 

Liebetrau (1979), some of the necessities of water quality monitoring are the following: 1) to 

provide a system-wide synopsis of water quality, 2) to monitor short and long-range trends in 

selected water quality parameters, 3) to detect actual or potential water quality problems and 4) to 

enforce standards.  
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More frequent sampling generally helps up to a point; however, data collected much more 

frequently than monthly lose independence, which adversely affects the statistical tests for trend. 

This paper examines statistically: (1) the time series of monthly values of water quality 

parameters and the discharge at one of the vital drainage outfalls in the eastern region of Egypt’s 

Nile Delta, (2) the existence of trends and the evaluation of the best fitted trend models and (3) 

the relationships between concentration and loads of water quality parameters and the discharge. 

Testing water quality data for trend over a period of time has received considerable attention 

recently. The interest in methods of water quality trend arises for two reasons. The first is the 

intrinsic interest in the question of changing water quality arising out of the environmental 

concern and activity. The second reason is that only recently has there been a substantial amount 

of data that is amenable to such an analysis.  

Trend analysis determines whether the measured values of a water quality variable increase or 

decrease during a time period. In statistical terms, has the probability distribution from which they 

arise changed over time or not. It would be useful to describe the amount or rate of that change, in 

terms of changes in some central value of the distribution such as mean or median (Hirsch et al., 

1982).  

2 THE STUDY SITE 

Bahr Hadus drain outfall discharges annually about 1 bcm of agricultural drainage water into El 

Salam Canal (Figure 1). El Salam Canal Project is considered as a strategic national development 

project for land reclamation of 620,000 acres in Sinai Governorate. 

 

Figure 1. Satellite image showing the area of Bahr Hadus outfall 

Since the catchment area of Bahr Hadus drain is located in a highly polluted area, the drain 

system is susceptible to pollution from legal and illegal dumping of domestic and industrial 

wastewater. Most of the water received by the drain is from agricultural diffuse sources. Although 

the domestic diffuse sources are only 4% of the total discharge, it contributes 94% of the organic 

load received by the drain, expressed as BOD (DRI, 2000). 

El-Salam 3 P.S 
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3 METHODOLOGY OF ANALYSIS  

In planning control and management program of streams, the statistical and trend analysis as well 

as the relations between concentrations or loads and discharge are important steps for 

understanding the behavior and the variation of water quality parameters and stream flow 

(Antonopoulos et al., 2001). 

Water quality data do not usually follow convenient probability distributions such as the well-

known normal and lognormal distributions on which many classical statistical methods are based 

(Lettenmaier et al., 1991). 

Frequency histograms are used to determine how well data fit a theoretical distribution. This 

could be achieved by comparing visually histograms of measured values to the density curve of 

normal distributions. To check normality, the Shapiro-Wilk W-statistic was used. The W-statistic 

has values ranging from 0 to 1; small values for W are significant and indicate non-normality 

(Shapiro and Wilk 1965). For samples less than 200 the Shapiro-Wilk test should be used (SAS 

1985). For larger samples, the Kolmogorov-Smirnov test should be used. 

The Shapiro-Wilk test, proposed in 1965, calculates a W statistic that tests whether a random 

sample, x1, x2, .. xn comes from (specifically) a normal distribution . Small values of W are 

evidence of departure from normality and percentage points for the W statistic. The W statistic is 

calculated as follows:  
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where the x(i) are the ordered sample values (x(1) is the smallest) and the ai are constants generated 

from the means, variances and co-variances of the order statistics of a sample of size n from a 

normal distribution. 

For evaluating the concentration-discharge and load-discharge relationships, the method of least 

squares for the pairs of monthly measured values of each variable with the discharge was used to 

determine the constants of these models. For this analysis, the linear (Cij=a+bQj), the power 

(Cij=aQj
b
), the exponential (Cij=a exp(bQj)) and the logarithmic (Cij=a+b ln(Qj)) models were 

used.  

4 RESULTS AND DISCUSSION 

Figure 2 shows the time series of monthly measured values of Q, BOD, COD, TSS, NO3 and P at 

Hadus drain outfall from August 1997 to December 2002. In figure 2 it is shown that many water 

quality parameters show striking seasonal variations, only the nitrates show relatively uniform 

seasonal variation during the time even though it gives the highest coefficient of variation. Some 

of the variations depend on the discharge and some on the seasonality. The statistical measures of 

time series of water quality variables used in the study analysis are given in Table 1. 
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Figure 2. Time Series of water quality parameters and discharge at Bahr Hadus outfall (August 1997 – 

December 2002) 

Table 1. Statistical parameters of the time series of monthly values of water quality parameters and 

discharge of Bahr Hadus drain outfall 

Variable Sample Size Mean Median Maximum Minimum Range STDV CV 

Q   m3/sec 51 33.64 31.90 83.75 5.05 78.71 16.75 0.50 

BOD   mg/l 65 63.47 45.40 375.20 6.00 369.20 66.00 1.04 

COD   mg/l 65 99.35 69.20 482.00 7.00 475.00 95.33 0.96 

TSS   mg/l 65 130.67 89.00 576.00 3.00 573.00 117.60 0.90 

NO3   mg/l 60 1.13 0.71 6.01 0.06 5.95 1.24 1.09 

P   mg/l 65 0.39 0.36 1.19 0.05 1.14 0.21 0.54 

STDV = standard deviation    CV = coefficient of variation 

From figure 2 and table 1, there is a variation in concentrations and discharge. There are different 

reasons for these variations, some of them depend on seasonality and discharge; the magnitude of 

the fluctuation in discharge is much greater than those of concentrations. The ratio of the highest 

to the lowest concentrations is very large for total suspended solids (192:1) followed by nitrates 

(100:1), chemical oxygen demand (69:1), biological oxygen demand (62:1) and phosphorus 

(23:1) while the ratio for discharge was about (16:1). 
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A very useful and concise graphical display for summarizing the distribution of a data set is the 

boxplot (Helsel and Hirsch, 1992). Box plots provide visual summaries of: 1) The center of the 

data (the median = the centerline of the box), 2) The variation or spread (interquartile range = the 

box height), 3) The skewness (quartile skew = the relative size of box halves) and 4) The presence 

or absence of unusual values (outliers and extreme values). Boxplots are even more useful in 

comparing these attributes between several data sets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Boxplots of water quality parameters and discharge at Bahr Hadus outfall 

Figure 3 shows the box and whiskers plots of water quality parameters and discharge at Bahr 

Hadus outfall. The plots show that the data of the variables BOD, COD, TSS, NO3, and P depart 

from a normal distribution not only in skewness, but also by the number of outliers and the 

extreme values which are unexpected and might be due to non-suitable measurements or handling 

the water samples. The data of discharge is approaching normality with only two outliers.  
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Figure 4. Frequency histograms of water quality parameters data and the log-transformed data  

The Shapiro-Wilk W-statistic was used to check normality, where normality has not been exactly 

met the transformation recommended was the log-transformation as shown in figure 4. The values 
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of W and P are presented in table 2 for the data before and after the transformation. Only 

discharge values did not need any transformation. 

Table 2. The Shapiro-Wilk W-statistic and P values for water quality parameters before and after the log-

transformation. 

Variable W P 
W 

(Transformed) 

P 

(Transformed) 

Q m
3
/month 0.952 0.069 0.965 0.242 

BOD   mg/l 0.687 0.000 0.974 0.509 

COD   mg/l 0.775 0.000 0.966 0.264 

TSS   mg/l 0.829 0.000 0.961 0.167 

NO3   mg/l 0.493 0.000 0.949 0.052 

P   mg/l 0.905 0.000 0.977 0.607 

It is not considered necessary to use nonparametric approaches simply because the assumption of 

normality has been exactly met after-transformation.  

5 TREND ANALYSIS FOR WATER QUALITY PARAMETERS 

The selection of the best-fitted model was based on the values of the MAPE, MAD, and MSD. 

MAPE, or Mean Absolute Percentage Error, measures the accuracy of fitted time series values. It 

expresses accuracy as a percentage. MAD, which stands for Mean Absolute Deviation, measures 

the accuracy of fitted time series values. It expresses accuracy in the same units as the data, which 

helps conceptualize the amount of error. MSD stands for Mean Squared Deviation. It is very 

similar to MSE, mean squared error, a commonly-used measure of accuracy of fitted time series 

values. Because MSD is always computed using the same denominator, n, regardless of the 

model, it is easy to compare MSD values across models. For all three measures of accuracy, the 

smaller the value the better the fit of the model. These statistics were used to compare the fits of 

the different methods. The values of the statistical tests and their graphs, along with the observed 

values of the data time series are presented in Figure 5, while the models and values of statistical 

tests are given in table 3. 

Table 3 Trend models with the values of the statistical tests for the goodness-of-fit. 

Variable Model MAPE MAD MSD 

Q 22.0045 + 0.536888*T - 0.00263*T
2
 56.311 12.175 239.635 

Log NO3 0.292777 - 0.02334*T + 0.000198*T
2
 279.577 0.346 0.181 

Log P -0.29 - 0.0112*T + 0.000136*T
2
 82.8552 0.1762 0.0524 

Log BOD 2.03524 - 0.00795*T - 0.0000899*T
2
 13.6426 0.2067 0.0682 

Log COD 2.33101 - 0.0138*T - 0.0000311*T
2
 11.9692 0.2041 0.0625 

Log TSS 2.32623 - 0.00793*T - 0.0000869*T
2
 17.6513 0.2631 0.1178 
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Figure 5.  Best fitted trend model of monthly measured values of water quality parameters 

It is clear from the previous trend analysis that: a) the second order quadratic equation describes 

the trend of the data time series better, b) the trends of BOD, COD and TSS are steeply 

downwards while the trend of NO3 is mildly downwards, c) the concentration of total P have no 

trends, while discharge shows upward trend. 

6 CONCENTRATION/LOAD-DISCHARGE RELATIONSHIPS 

The results of simple regression applied between each water quality variable’s concentration 

(dependant variable) and the discharge (independent variable) as well as between each water 

quality variable’s load (dependant variable) and the discharge (independent variable), monitored 

at Bahr-Hadus drain outlet are given in table 4. In this table the values of parameters a and b are 

given for linear (Cij=a+bQj), power (Cij=aQj
b
), exponential (Cij=a exp(bQj)) and logarithmic 

(Cij=a+b ln(Qj)) models as well as the correlation coefficients are given. Figure 6 shows the best 

fitted to the data regression models. 

Table 4.  Concentration-discharge and Load-discharge relationship 

Concentration-discharge Load-discharge 
Variable 

Equation a b r Equation a b r 

BOD Log 197.33 -34.98 0.0705 Power 10.242 0.7772 0.2338 

COD Log 243.31 -34.31 0.0373 Exp 52.15 0.046 0.3387 

NO3 Power 0.3699 0.2835 0.0567 Power 0.0319 1.2835 0.5518 

P Power 0.5005 -0.075 0.0107 Exp 0.2451 0.0424 0.6226 

TSS Power 272.64 -0.257 0.0249 Linear -133.4 20.282 0.2886 
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Figure 6. The best fitted model of water quality parameters concentrations and loads against discharge  

From the values of table 4 and the graphs of figure 6 it is clear that: a) the logarithmic and the 

power models describe better the concentration-discharge relationships, b) the exponential and 

the power models describe better the load-discharge relationships, c) the load-discharge 

relationships show better correlation than that of concentration-discharge relationships even 

though both correlation relations are not significant. 

7 CONCLUSIONS 

Many factors, such as different sources of contaminants, seasonal cycles, precipitation, and 

natural variability affect measured water quality. As a consequence, it often takes many years of 

regular water quality data collection to statistically detect a trend that is, small, gradual changes. 

Water quality trend assessment serves primarily as a warning system for change. This can be 

extremely useful for policy evaluation, but it must be emphasized that definitive conclusions on 

water quality trends may require years of sampling. Ultimately, if a trend is identified, 

additional scientific assessment is often essential to understand the implications of the trends 

and to identify effective corrective actions. 

The load-discharge relationships show better correlation than that of concentration-discharge 

relationships even though both relations are not significant, extra data could lead to better 

correlation.  

The trends of BOD, COD, TSS and NO3 are downwards following the order quadratic equation 

while the discharge shows upward trend, only the concentration of total P has no trend. 
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