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1. Motivations

> Available rainfall data sources: P Ne
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v’ The ground-based rainfall gauges P AR\

v Satellite-based precipitation products c et —LL

‘k CHINA

» For river basins spanning many countries:

v' Sparse distribution of rainfall stations

v" Collecting data over a long period is a challenging task.

» Require an up-to-date dataset for studies

Mekong River Basin (MRC, 2019)
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2. Study Area and Data

» Target: Produce a more up-to-date dataset than that of the APHRODITE product
and sufficiently reliable for the Mekong basin studies.

_ Spatial/ Temporal _
Dataset \ersion _ Area coverage  Time coverage
resolution
APHRODITE V1901 0.25°/daily Monsoon Asia 1998-2015
PERSIANN CDR 0.25°/daily 60S-60N 1983-2021 §

TRMM 3B42 0.25°/daily 50S-50N 1998-2020
APHRODITE: Asian Precipitation - Highly Resolved Observational Data Integration Towards Evaluation of Water Resources.
PERSIANN-CDR: Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks - Climate Data Record 60

TRMM: Tropical Rainfall Measuring Mission
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3. Methodology

» Convolutional Neural Network (CNN)

v" CNN is very similar to ANN, consisting of neurons with learnable weights and biases.

v" CNN arranges its neurons in three dimensions (Width, Height, Depth)

v CNN is composed of a convolution layer and a pooling layer
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Artificial Neural Network - ANN

http://cs231n.github.io/convolutional-networks/
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http://cs231n.github.io/convolutional-networks/

» Convolutional Autoencoder (CAE)

v" Autoencoder structure consists of an Encoding process and a Decoding process

v" ConvAE (CNN + autoencoder) receives input data in three dimensions, extracts each feature in the encoding process

compresses it in a lower dimension, and reconstructs the original size through a decoding process
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3. Proposed Model
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Conv2D(filters=n_filters, kernel size=(3,3), padding='same',
kernel initializer='he normal')(input_img_v3)

Batchnormalization()(ell)

Activation('relu')(el11)

Conv2D(filters=n_filters, kernel size=(3,3), padding='same',
kernel initializer="he normal')(ell)

Batchnormalization()(ell)

Activation('relu')(ell)

Conv2D(filters=n_filters, kernel size=(3,3), padding='same’,
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Batchmormalization()(e1l)

Activation('relu')(el11)

MaxPooling2D(pool size=(2, 2), padding='same')(ell)
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CAE Model
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4. Results and Discussion
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» Temporal Correlation

Annual Precipitation Monthly Precipitation
Compared with MAD RMSD
Yt CDR TRMM APHRODITE CAE_CDR CAE_TRMM
ear - - APHRODITE (mm/year) (mm/year) NSE
2014 1,661 1,540 1,086 1,125 1,121 CDR 43.2 54.1 0.61
2015 1,498 1,402 1,050 1,095 1,058 TRMM 34.0 45.6 0.74
CAE_CDR 12.4 19.0 0.97
Average —
(mmiyear) 179 1471 1,068 1110 1090 CAE_TRMM 8.7 12.7 0.99
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NSE is Nash-Sutcliffe Efficiency ——CDR ~ TRMM —— APHRODITE - «~CAE_CDR o CAE_TRMM
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» Spatial Correlation

Spatial distribution pattern of precipitation products in 2014
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Compared with CDR TRMM APHRODITE CAE_CDR CAE_TRMM
APHRODITE - -
RMSD (mm/year) 690 594 - 174 177
MAD (mm/year) 582 461 - 134 137
Bias (mm/year) 574 453 - 39 35
Spatial Correlation 0.61 0.74 - 0.91 0.91
oy and o, denoting the standard deviations of x and y
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» Spatial Correlation

Spatial distribution pattern of precipitation products in 2015
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Compared with CDR TRMM APHRODITE CAE_CDR CAE_TRMM
APHRODITE - -
RMSD (mm/year) 561 450 - 236 210
MAD (mm/year) 480 366 - 186 166
Bias (mm/year) 448 352 - 46 8
Spatial Correlation 0.63 0.81 - 0.84 0.86
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» Probability Distribution

Analysis of annual precipitation by pixel
v" Probability Density Function - PDF

v" Cumulative Distribution Function - CDF
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» Probability Distribution

« These data sets represent the total annual rainfall of each grid cell
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6. Concluding Remarks

» Bias-corrected rainfall products provide a higher data quality than the

satellite-based products

» Despite using different data sources, the bias-adjusted precipitation

products still exhibit competitively excellent performance
» CAE_TRMM is slightly better than CAE_CDR

» These products can capture the trend of rainfall distribution as well as

rainfall intensity in terms of spatio-temporal

» The effectiveness of CAE model
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Based on:

Editor’s Choice Article

Application of Convolutional Neural Network for Spatiotemporal Bias Correction of Daily
Satellite-Based Precipitation

by  * Xuan-Hien Le, { " Giha Lee, { ® Kwansue Jung, { " Hyun-uk An, { ® Seungsoo Lee and { * Younghun Jung
Remote Sens. 2020, 12(17), 2731; https://doi.org/10.3390/rs12172731 - 24 Aug 2020
Cited by 7

Abstract Spatiotemporal precipitation data is one of the essential components in modeling hydrological problems. Although the
estimation of these data has achieved remarkable accuracy owning to the recent advances in remote-sensing technology, gaps
remain between satellite-based precipitation and observed data due to the dependence [...] Read more.

(This article belongs to the Special Issue Machine and Deep Learning for Earth Observation Data Analysis)
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