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1. Motivations

 Available rainfall data sources:

 The ground-based rainfall gauges

 Satellite-based precipitation products

 For river basins spanning many countries:

 Sparse distribution of rainfall stations

 Collecting data over a long period is a challenging task.

 Require an up-to-date dataset for studies

Mekong River Basin (MRC, 2019)
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2. Study Area and Data

 Target: Produce a more up-to-date dataset than that of the APHRODITE product

and sufficiently reliable for the Mekong basin studies.
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Dataset Version
Spatial/ Temporal 

resolution
Area coverage Time coverage

APHRODITE V1901 0.25°/daily Monsoon Asia 1998-2015

PERSIANN CDR 0.25°/daily 60S-60N 1983-2021

TRMM 3B42 0.25°/daily 50S-50N 1998-2020

APHRODITE: Asian Precipitation - Highly Resolved Observational Data Integration Towards Evaluation of Water Resources.

PERSIANN-CDR: Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks - Climate Data Record

TRMM: Tropical Rainfall Measuring Mission
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 CNN is very similar to ANN, consisting of neurons with learnable weights and biases.

 CNN arranges its neurons in three dimensions (Width, Height, Depth)

 CNN is composed of a convolution layer and a pooling layer

 Convolutional Neural Network (CNN)

http://cs231n.github.io/convolutional-networks/

Artificial Neural Network - ANN
Convolutional Neural Network - CNN
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3. Methodology

http://cs231n.github.io/convolutional-networks/
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 Autoencoder structure consists of an Encoding process and a Decoding process

 ConvAE (CNN + autoencoder) receives input data in three dimensions, extracts each feature in the encoding process

compresses it in a lower dimension, and reconstructs the original size through a decoding process

 Convolutional Autoencoder (CAE)

(Karimpouli et al., 2019)

Convolutional Autoencoder structure

Encoding Decoding

(Dr. Dataman, towards data science, 2019)

Convolution layer Pooling layer

http://cs231n.github.io/convolutional-networks/
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http://cs231n.github.io/convolutional-networks/
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Structure of a BLOCK

3. Proposed Model
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CAE Model

 Total params: 1,753,025

 Training on: Google Colab Pro

 Time usage: 4-5 (hour)

Training parameters:

 Loss function: MSE

 Optimize function: Adam

 Learning rate: 0.001

 Batch size: 32
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4. Results and Discussion

 Temporal Correlation

 Spatial Correlation

 Probability Distribution
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Year CDR TRMM APHRODITE CAE_CDR CAE_TRMM

2014 1,661 1,540 1,086 1,125 1,121

2015 1,498 1,402 1,050 1,095 1,058

Average 

(mm/year)
1,579 1,471 1,068 1,110 1,090

Monthly PrecipitationAnnual Precipitation

Compared with 

APHRODITE

MAD 

(mm/year)

RMSD 

(mm/year)
NSE

CDR 43.2 54.1 0.61

TRMM 34.0 45.6 0.74

CAE_CDR 12.4 19.0 0.97

CAE_TRMM 8.7 12.7 0.99

Satellite data

Corrected data

 Temporal Correlation

MAD is Mean Absolute Deviation

RMSD is Root Mean Square Deviation

NSE is Nash-Sutcliffe Efficiency
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Compared with 

APHRODITE
CDR TRMM APHRODITE CAE_CDR CAE_TRMM

RMSD (mm/year) 690 594 - 174 177

MAD (mm/year) 582 461 - 134 137

Bias (mm/year) 574 453 - 39 35

Spatial Correlation 0.61 0.74 - 0.91 0.91
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x and y denoting the standard deviations of x and y

Spatial distribution pattern of precipitation products in 2014

 Spatial Correlation
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Compared with 

APHRODITE
CDR TRMM APHRODITE CAE_CDR CAE_TRMM

RMSD (mm/year) 561 450 - 236 210

MAD (mm/year) 480 366 - 186 166

Bias (mm/year) 448 352 - 46 8

Spatial Correlation 0.63 0.81 - 0.84 0.86

Spatial distribution pattern of precipitation products in 2015

 Spatial Correlation



ConclusionsStudy Area Results and DiscussionMethodology Proposed ModelOverview of Deep Learning 13

2014

Satellite data

Corrected data

Satellite data

Corrected data

Analysis of annual precipitation by pixel

 Probability Density Function - PDF

 Cumulative Distribution Function - CDF

 Probability Distribution

2015
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• These data sets represent the total annual rainfall of each grid cell

Violin plot of rainfall products in 2014

 Probability Distribution

2014

Satellite data

Corrected data

CDR
TRMM
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6. Concluding Remarks

 Bias-corrected rainfall products provide a higher data quality than the

satellite-based products

 Despite using different data sources, the bias-adjusted precipitation

products still exhibit competitively excellent performance

 CAE_TRMM is slightly better than CAE_CDR

 These products can capture the trend of rainfall distribution as well as

rainfall intensity in terms of spatio-temporal

 The effectiveness of CAE model
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