World Water Congress International Water Resources Association (IWRA)

Presentation Topic

Bias Correction of Daily Satellite-Based Precipitation Data Using Convolutional Neural Network Model

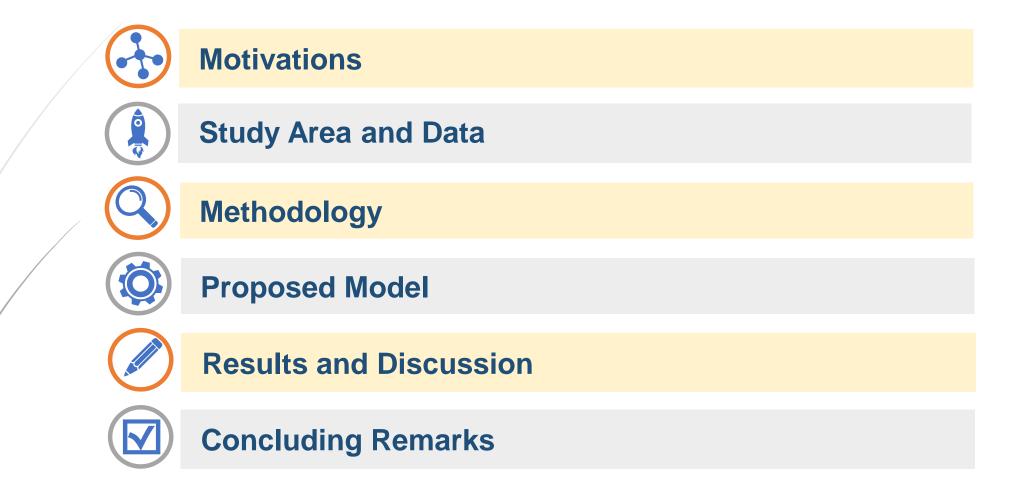
Xuan-Hien Le¹, Giha Lee²

¹ Ph.D., Disaster Prevention Emergency Management Institute, Kyungpook National University

² Assoc. Prof., Department of Advanced Science and Technology Convergence, Kyungpook National University

Daegu, December 2021

Contents

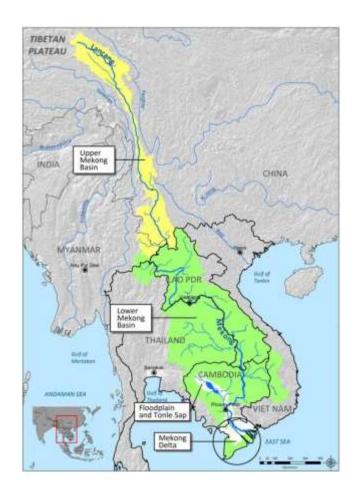


Bias Correction of Daily Satellite-Based Precipitation Data Using Convolutional Neural Network Model

1. Motivations

- > Available rainfall data sources:
 - ✓ The ground-based rainfall gauges
 - ✓ Satellite-based precipitation products
- > For river basins spanning many countries:
 - ✓ Sparse distribution of rainfall stations
 - \checkmark Collecting data over a long period is a challenging task.

Require an up-to-date dataset for studies

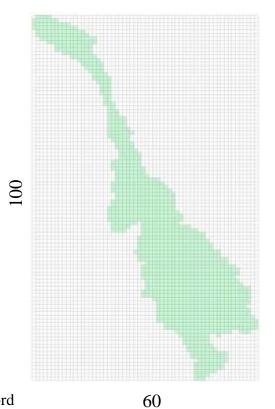


Mekong River Basin (MRC, 2019)

2. Study Area and Data

Target: Produce a more up-to-date dataset than that of the APHRODITE product and sufficiently reliable for the Mekong basin studies.

Dataset	Version	Spatial/ Temporal Area covera		ge Time coverage
		resolution	-	-
APHRODITE	V1901	0.25°/daily	Monsoon Asia	1998-2015
PERSIANN	CDR	0.25°/daily	60S-60N	1983-2021
TRMM	3B42	0.25°/daily	50S-50N	1998-2020



APHRODITE: Asian Precipitation - Highly Resolved Observational Data Integration Towards Evaluation of Water Resources. PERSIANN-CDR: Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks - Climate Data Record TRMM: Tropical Rainfall Measuring Mission

Study Area Methodology

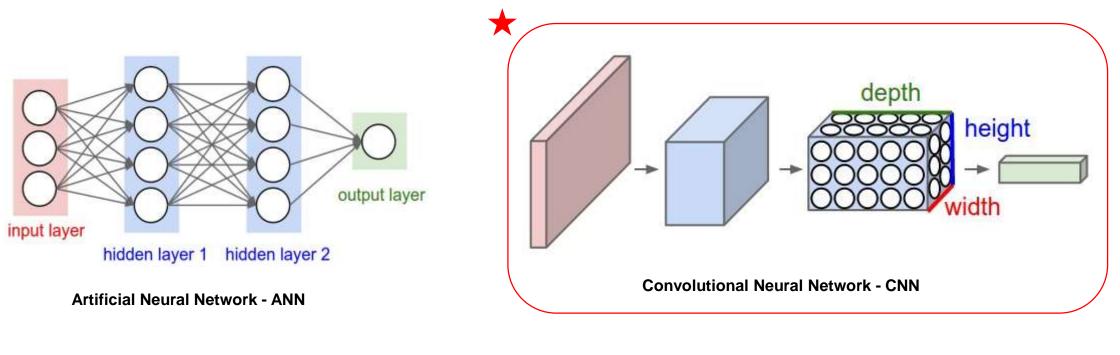
Proposed Model

Conclusions

3. Methodology

Convolutional Neural Network (CNN)

- ✓ CNN is very similar to ANN, consisting of neurons with learnable weights and biases.
- ✓ CNN arranges its neurons in three dimensions (Width, Height, Depth)
- ✓ CNN is composed of a convolution layer and a pooling layer

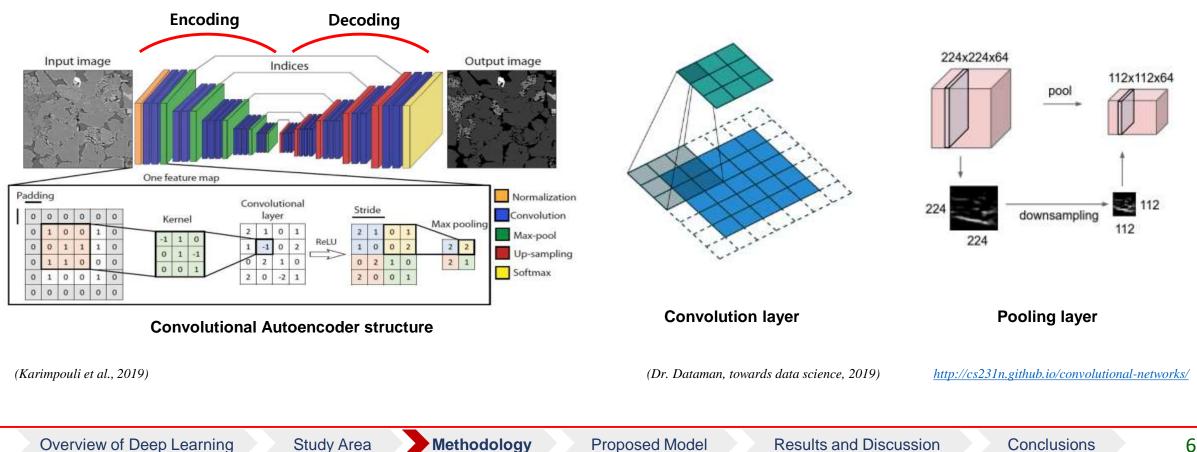


http://cs231n.github.io/convolutional-networks/

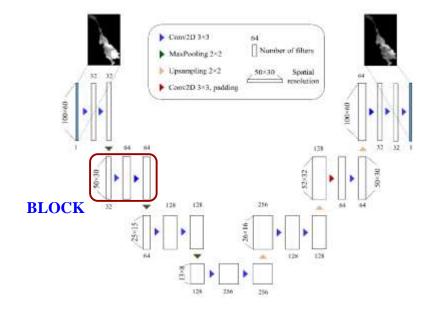
Methodology

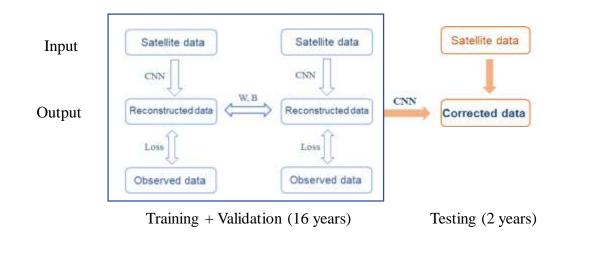
Convolutional Autoencoder (CAE)

- Autoencoder structure consists of an **Encoding** process and a **Decoding** process \checkmark
- ConvAE (CNN + autoencoder) receives input data in three dimensions, extracts each feature in the encoding process \checkmark compresses it in a lower dimension, and reconstructs the original size through a decoding process



3. Proposed Model





Study Area

$BLOCK = \begin{bmatrix} Conv 2D \\ BatchNorm \\ Re \ LU \end{bmatrix} \times 2$

Structure of a BLOCK

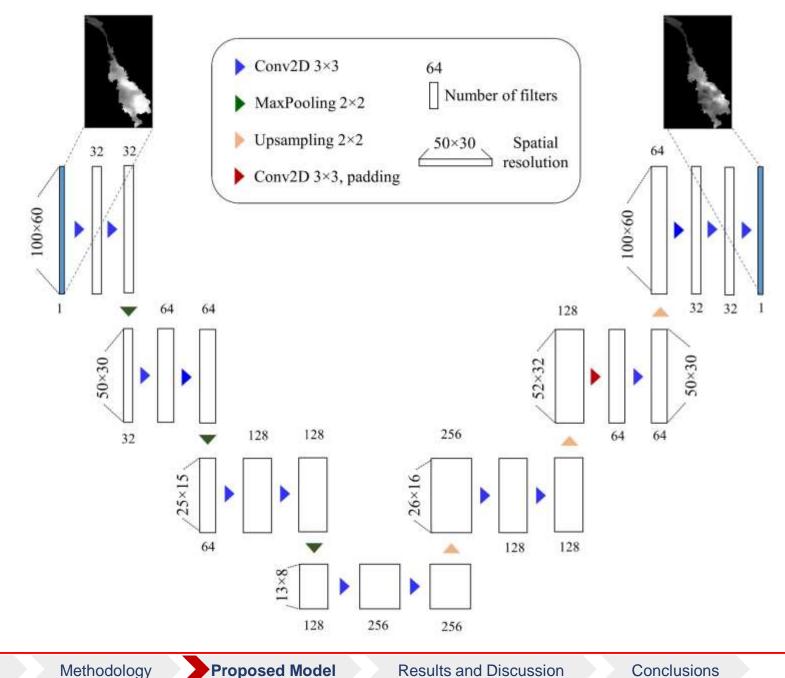
Methodology

CAE Model

Training parameters:

- Loss function: MSE \checkmark
- Optimize function: Adam \checkmark
- Learning rate: 0.001 \checkmark
- Batch size: 32 \checkmark

- Total params: 1,753,025 \geq
- Training on: Google Colab Pro \geq
- Time usage: 4-5 (hour) \geq



Study Area

4. Results and Discussion

Temporal Correlation

Spatial Correlation

> Probability Distribution

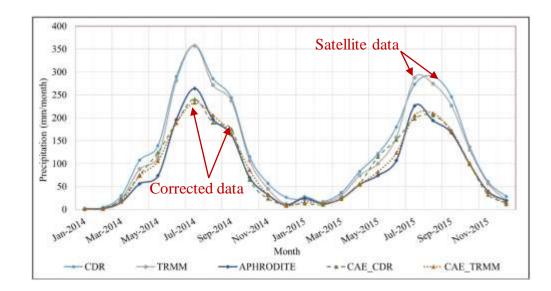
> Temporal Correlation

Annual Precipitation

Monthly Precipitation

	Year	CDR	TRMM	APHRODITE	CAE_CDR	CAE_TRMM
_	2014	1,661	1,540	1,086	1,125	1,121
	2015	1,498	1,402	1,050	1,095	1,058
	Average (mm/year)	1,579	1,471	1,068	1,110	1,090

Compared with APHRODITE	MAD (mm/year)	RMSD (mm/year)	NSE
CDR	43.2	54.1	0.61
TRMM	34.0	45.6	0.74
CAE_CDR	12.4	19.0	0.97
CAE_TRMM	8.7	12.7	0.99



MAD is Mean Absolute Deviation RMSD is Root Mean Square Deviation

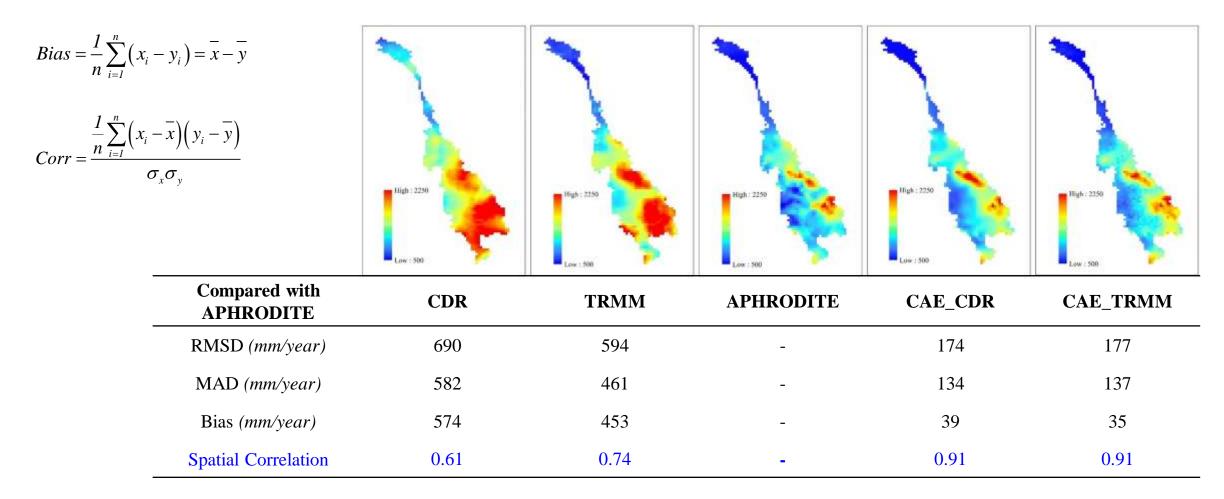
NSE is Nash-Sutcliffe Efficiency

Study Area

Methodology

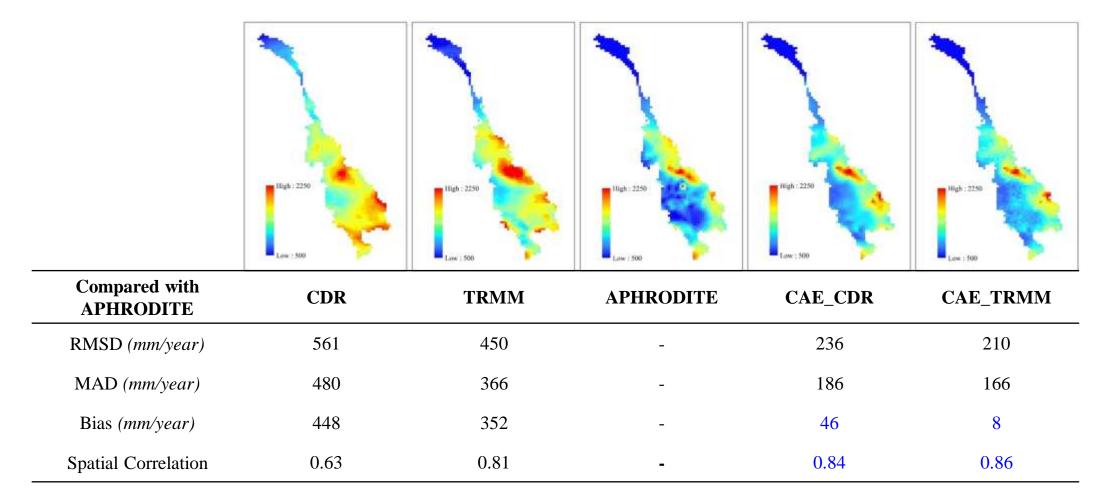
Spatial Correlation

Spatial distribution pattern of precipitation products in 2014



 σ_x and σ_y denoting the standard deviations of x and y

Spatial Correlation



Spatial distribution pattern of precipitation products in 2015

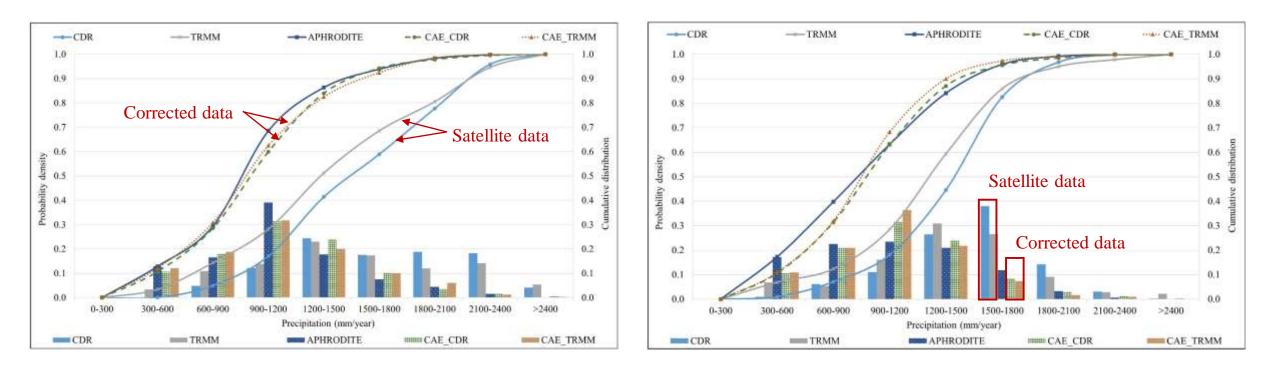
Study Area

Methodology

Probability Distribution

Analysis of annual precipitation by pixel

- ✓ Probability Density Function PDF
- ✓ Cumulative Distribution Function CDF



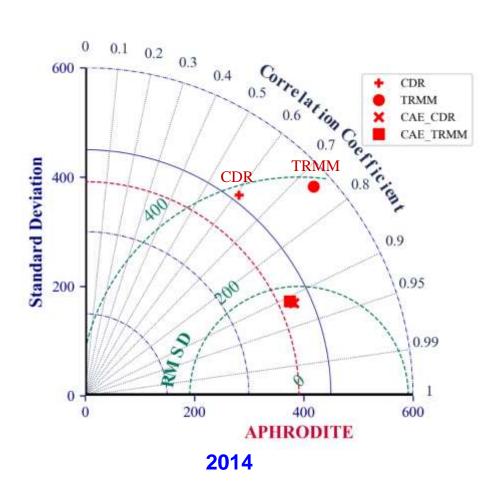
2014

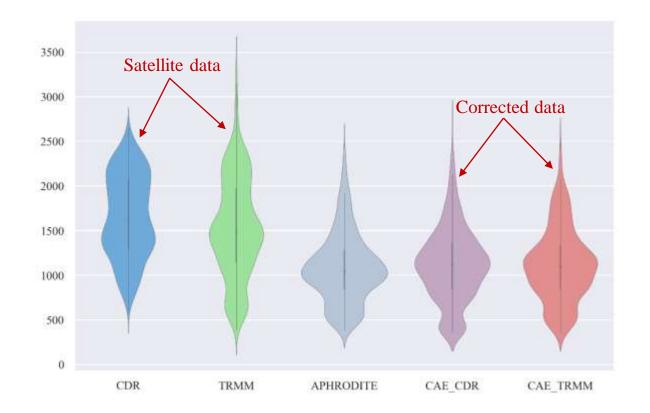
2015

Study Area Methodology

Probability Distribution

• These data sets represent the total annual rainfall of each grid cell





Violin plot of rainfall products in **2014**

6. Concluding Remarks

- Bias-corrected rainfall products provide a higher data quality than the satellite-based products
- Despite using different data sources, the bias-adjusted precipitation products still exhibit competitively excellent performance
- CAE_TRMM is slightly better than CAE_CDR
- These products can capture the trend of rainfall distribution as well as rainfall intensity in terms of spatio-temporal

The effectiveness of CAE model

Editor's Choice Article

Open Access Editor's Choice Article

Application of Convolutional Neural Network for Spatiotemporal Bias Correction of Daily Satellite-Based Precipitation

by **Q** Xuan-Hien Le, **Q** Giha Lee, **Q** Kwansue Jung, **Q** Hyun-uk An, **Q** Seungsoo Lee and **Q** Younghun Jung *Remote Sens.* 2020, *12*(17), 2731; https://doi.org/10.3390/rs12172731 - 24 Aug 2020 Cited by 7

Abstract Spatiotemporal precipitation data is one of the essential components in modeling hydrological problems. Although the estimation of these data has achieved remarkable accuracy owning to the recent advances in remote-sensing technology, gaps remain between satellite-based precipitation and observed data due to the dependence [...] Read more. (This article belongs to the Special Issue Machine and Deep Learning for Earth Observation Data Analysis)

Show Figures

➡

THANK FOR YOUR TIME! 감사합니다!

Ixhien88@gmail.com

https://www.facebook.com/lxhien88/

https://sites.google.com/view/lxhien/