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Introduction

 Drought is a complex natural phenomenon that usually begins with the
deficit of precipitation, leading to agricultural, hydrological and socio-
economic drought (Li et al. 2013).

 The detection of onset and the end of a drought event is difficult to
access.

 Drought events, also called “the creeping disaster”, develop slowly and
often unnoticed and have diverse and indirect consequences (Wilhite
2000; Mishra and Singh 2010).

 Global warming is currently a crucial issue, which increases the
intensity and frequency of drought events and also has direct impacts on
the availability of water resources (Kabat et al. 2003; Leng et al. 2015).

 Droughts are strictly related to stochastic phenomena, so probabilistic
characterization and knowledge about the frequency of drought are
needed for effective drought management strategies (Mishra and Singh
2011).
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Problem in Practice



Introduction

 About half of the earth’s terrestrial surfaces

are susceptible to droughts and more

importantly, almost all the major agricultural

lands are located there (USDA, 1994).

 In terms of damages such as crop yield

reduction, economic costs and the number of

people effected, the drought are on top

among other natural disasters (Obasi, 1994;

Wilhite, 2000; Hewitt, 2014).

 The estimated annual cost of damages

caused by drought varied from 6 to 8 billion

USD$ which is higher than any other natural

disaster (Hao et al., 2014; Mao et al., 2015).
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Corn crop damaged by

severe drought in Colorado

and Bruceville, Indiana in

2012.

Drought Impacts 



Introduction

 United Nations classified South Korea as a

country suffering from more than moderate

water shortage and experiencing serious

droughts since 1990s (Choi et al. 2008), and

drought risk is likely to increase over the

course of the twenty-first century due to

climate change (Boo et al. 2004; Yoo et al.

2012).

 South Korea experienced large scale

droughts in every two years (Kim et al. 2011).

 Due to the highly concentrated rainfall pattern

in summer, the vulnerability of drought

increases in other seasons (Yoo et al. 2015).
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The dried out Soyang

lake and sea bed of

the Soyang River in

Chuncheon, Gangwon

Province, northeastern

South Korea 2015.

Drought in South Korea



Introduction

 Droughts are generally classified into four categories;

meteorological, agricultural, hydrological and socio-

economic drought (Wilhite and Glantz, 1985).

 SPI, SSI, & SRI have been widely used to detect

meteorological, agricultural and hydrological drought (Mishra

and Singh 2010).

 Standardized drought indices were calculated by fitting

probability distribution to hydro-meteorological variable

based on the assumption of stationarity (Wang et al. 2015

 These approaches for calculating drought indices are true

when the climate is stable or stationary (Bazrafshan and

Hejabi 2018).

 Under climate instability or non-stationarity circumstances,

drought analysis using stationary drought indices may lose

their generality and validity (Ling and Jiang 2018).

Meteorological drought

Agricultural drought

Hydrological drought

Socio-economic drought

Precipitation deficiency

Low soil moisture

Low streamflow and low 

surface water levels

Low groundwater 

levels and discharge

Impacts

Anomalies in 

precipitation
Anomalies in 

temperature

Meteorological 

situation
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Scheme representing different types of drought and their 

development

Drought Types, Drought Indices and Problems



Introduction

 Frequency analysis is a commonly used method in hydrologic modeling.

 The copula method has proven to be a robust tool in multivariate cases and has been

applied in non-stationary research in recent years.

 The bivariate evaluation of different drought indices under non-stationary assumption

has not done so far.

 In this study, we proposed a non-stationary Standardized Precipitation Index (SPINS)

that is sufficiently robust to monitor drought under non-stationary conditions.

 Finally, this study evaluate the effect of non-stationary properties of meteorological

drought on bivariate frequency analysis and compare it with the conventional practices.
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Objectives of Study



Description of Study Area

 The study area is located in South 
Korea at 34° - 38° latitude and 126° -
130° longitude.

 Out of 56 rain gauge stations 8 rain 
gauge stations were selected.

 The mean annual precipitation ranges 
between  800-1800mm. More than 
50% precipitation falls in summer 
season.

 The average annual temperature 
ranges between 10°C – 14.5 °C.

 Precipitation data period 1961-2013.

 http://www.kma.go.kr/

Research Area and Data
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Gangneung
Seoul

Chupungryung
Pohang

Ulsan

Jeonju

Yeosu

Gwangju

http://www.kma.go.kr/


Estimation of Drought

 Standardized Precipitation Index (SPIC) was used to
calculate meteorological drought at 12 month time scale.

 In order to calculate SPI, firstly the daily data is
aggregated into monthly time scale and appropriate
marginal distributions (gamma) is fitted to long term
Precipitation series.

 Many studies (McKee et al. 1993; Wang et al. 2015)
found in literature describe that log-normal distribution
is well fitted to streamflow data.

 The cumulative distribution function (CDF) of fitted
marginal distribution is then transformed into standard
normal variate with zero mean and one standard
deviation.

𝑆𝑅𝐼 =
− 𝑡 −

𝑐0+𝑐1𝑡+𝑐2𝑡
2

1+𝑑1𝑡+𝑑2𝑡
2+𝑑3𝑡

3 ,

𝑡 −
𝑐0+𝑐1𝑡+𝑐2𝑡

2

1+𝑑1𝑡+𝑑2𝑡
2+𝑑3𝑡

3 ,

𝑡 = ln
1

𝐹(𝑥)2
, 0 < 𝐹(𝑥) ≤ 0.5

𝑡 = ln
1

1−𝐹(𝑥)2
, 0.5 < 𝐹 𝑥 ≤ 1

(1)

where, F(x) is the cumulative probability distribution function,
and c0, c1, c2, d1, d2, and d3 are constants.

 In this study, Generalized Additive Models for Location, Scale and

Shape (GAMLSS), which was proposed by (Rigby and Stasinopoulos

2005) was used to model precipitation series with non-stationary

probability distributions.

 In a GAMLSS framework, for observations of a variable y that

follows a distribution with PDF 𝑓 𝑦 𝜃 , the parameter vector 𝜃𝑇is

described as a function of explanatory variables and random effects.

 In case there are no additive terms, the distribution parameters can be 

denoted by a monotonic link function 𝜂𝑘 as 

𝜂𝑘 𝜃𝑘 = 𝑋𝑘𝛼𝑘 = 𝛼0𝑘 + 𝛼1𝑘𝑋 + …+ 𝛼𝑞𝑘𝑋
𝑞 , 𝑘 = 1,2,…𝑝 (2)

where 𝑋𝑘 denotes the explanatory variables;
𝛼𝑘 are polynomial coefficients;
p = number of parameters;
q = degree of polynomial;

 The location and scale parameters were related to explanatory variables in

this study, including that one of them is time varying or that both of them are

time varying. The CDF of non-stationary probability distribution is

transformed into standard normal variate using Eq. (1).

Conventional Method Non-stationary Method
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Frequency Analysis

 The univariate return periods are expressed by 

following equations: 

𝑇𝑆 =
𝐸(𝐿)

1−𝐹𝑠(𝑠)
(3)

𝑇𝐷 =
𝐸(𝐿)

1−𝐹𝐷(𝑑)
(4)

where TS and TD represent the univariate return period of

drought severity (S) and duration (D) to be greater than or

equal to a given drought severity (s) and duration (d); FS and

FD are the cumulative distributions for severity and duration.

Conditional drought distribution were also derived from
copula based bivariate distribution using following
equations.

 To evaluate the drought severity distribution given that
the drought duration D exceeding a certain threshold
d.

𝑃 𝑆 ≤ 𝑠 𝐷 ≥ 𝑑′ =
𝑃(𝐷≥𝑑′, 𝑆≤𝑠)

𝑃(𝐷≥𝑑′)
(5)

 To evaluate the drought duration distribution given
that the drought severity S exceeding a certain
threshold s.

𝑃 𝐷 ≤ 𝑑 𝑆 ≥ 𝑠′ =
𝑃(𝐷≥𝑑 , 𝑆≤𝑠′)

𝑃(𝑆≥𝑠′)
(6)

Univariate Return Period Conditional Drought Distribution

10



Frequency Analysis

 The joint return periods of drought events are

estimated using two conditions:

 The return period TDS for D ≥ d and S≥ s when

both drought duration and severity exceed their

specified values.

𝑇𝐷𝑆 =
𝐸(𝐿)

𝑃(𝐷≥𝑑 𝑎𝑛𝑑 𝑆≥𝑠)
=

𝐸(𝐿)

1−𝐹𝐷 𝑑 −𝐹𝑆 𝑠 +𝐹𝐷,𝑆(𝑑,𝑠)
(7)

 the return period TˊDS for D ≥ d or S≥ s when either

drought duration or severity exceed their specified

values.

𝑇𝐷𝑆
′ =

𝐸(𝐿)

𝑃(𝐷≥𝑑 𝑜𝑟 𝑆≥𝑠)
=

𝐸(𝐿)

1−𝐹𝐷,𝑆(𝑑,𝑠)
(8)

 The conditional return periods of drought events are 

estimated under two conditions: 

 The return period of drought duration D given

drought severity exceeding a threshold s.

𝑇𝐷|𝑆≥𝑠 =
𝑇𝑆

𝑃(𝐷≥𝑑 𝑎𝑛𝑑 𝑆≥𝑠)
(9)

 The return period of drought severity S given drought 

duration D exceeding a threshold d.

𝑇𝑆|𝐷≥𝑑 =
𝑇𝐷

𝑃(𝐷≥𝑑 𝑎𝑛𝑑 𝑆≥𝑠)
(10)

Joint Return Period Conditional Return Period
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Results

11

Comparison between SPIC  & SPINS

Seoul
Gwangju
Pohang
Ulsan
Jeonju

Gangneung

Data

CDF
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1988-1989

1976-1978
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1994-1995
2000-2001

2007-2009

𝐒𝐏𝐈𝐂 𝐒𝐏𝐈𝐍𝐒

Seoul Station

Drought 

Characteristics
SPIC SPINS

Severity 6.066 8.388

Duration 4.357 5.8125

Frequrncy 14 16

Inter-Arrival time 41.46 39.86

Comparison of SPIC  & SPINS with Historical Droughts at Seoul station

(Lee and Kim 2013)



Results

 Drought characteristics (Duration & Severity) extracted from SPINS were fitted to several marginal 

distributions and best distribution was selected based on AIC criteria. Results of AIC criteria are 

shown below.
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AIC Criteria for Duration

Stations Exponential Gamma Log-Normal Log-Logistic Weibull

Seoul 90.32 89.84 90.58 92.12 89.73

Chupungryung 93.58 93.8 95.96 97.58 93.11

Gangneung 88.65 87.46 88.32 89.59 87.44

Gwangju 85.07 82.69 83.69 84.93 82.4

Jeonju 78.59 76.64 78.91 79.44 75.5

Pohang 102.5 95.82 96.28 98.44 95.61

Ulsan 110.55 109.84 108.27 109.65 110.65

Yeosu 104.32 102.7 103.28 105.05 102.74

AIC Criteria for Severity

Stations Exponential Gamma Log-Normal Log-Logistic Weibull

Seoul 102.06 103.17 102.82 104.07 103.39

Chupungryung 107.44 108.95 111.17 112.75 108.62

Gangneung 102.63 103.41 104.1 105.3 103.47

Gwangju 97.69 98.52 98.31 99.57 98.72

Jeonju 89.61 90.2 91.62 92.36 90.002

Pohang 114.48 111.58 111.77 113.94 111.59

Ulsan 125.08 126.08 124.51 125.9 126.49

Yeosu 120.46 121.042 120.68 122.106 121.357



Results

 Several copula functions (Clayton, Frank, Gumbel, Joe, t and Galambos) were tested to construct linkage between
drought duration and drought severity.

 Best copula was selected based on p-value of Cramer-von Mises test. The results of all the copula functions in Seoul
station are shown in Figure below.
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Best Copula

Stations Name Parameter

Seoul Frank 32.949

Chupungryung Clayton 17.641

Gangneung Clayton 22.506

Gwangju Frank 29.126

Jeonju Frank 23.049

Pohang Frank 17.725

Ulsan Gumbel 7.7404

Yeosu Frank 24.985



Results

 Results of conditional distribution of drought severity given drought duration exceeding a certain threshold d` is

shown in Fig. a, whereas conditional distribution of drought duration given drought severity exceeding a certain

threshold s` is shown in Fig. b.
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a) b)

Conditional Drought Distribution



Results
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 Results of joint return period between drought duration and severity is defined in two cases:

i) return period of D ≥ d and S ≥ s ii) return period of D ≥ d or S ≥ s

are shown in figures a and b. The return periods are demonstrated by contour lines.

a) b)

Joint Return Period



Results

 The results of conditional return period for drought duration given drought severity exceeding a certain threshold is shown

in Fig. a., whereas the return period of drought severity given drought duration exceeding a certain threshold is shown in

Fig. b.
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a) b)

Conditional Return Period



Results
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Seoul Station TD TS

Return Period 
Drought 

duration 

Drought 

Severity

(years) (months)

5 1.61 2.05

10 4.7 5.3

20 7.68 9.5

50 11.65 16.8

100 14.65 23.95

Seoul Station TD TS

Return Period 
Drought 

duration 

Drought 

Severity

(years) (months)

5 3.4 3.5

10 6.86 9.3

20 9.7 15.2

50 12.92 22.8

100 15.2 28.55

Duration Severity TD and S TD or S

(months) (years) (years)

2 2.5 6.15 4.93

5 6 13.86 9.36

8 10 35.23 15.78

11 14 91.89 24.39

13 19.5 335.8 31.93

Duration Severity TD and S TD or S

(months) (years) (years)

2 2.5 4.4 4.15

5 6 8.28 6.03

8 10 21.84 8.62

11 14 69.13 12.33

13 19.5 427.49 15.65

𝐒𝐏𝐈𝐂 𝐒𝐏𝐈𝑵𝑺

Univariate 

Return Period

Bivariate 

Return Period



Conclusions

 In this study, 53 years of precipitation records at 8 rain gauge stations were used to construct a
non-stationary SPINS at 12-month timescale.

 The performance of SPINS were compared with conventional SPIC.

 The bivariate probabilistic properties of droughts such as joint probabilities, conditional
probabilities, joint return periods and conditional return periods were considered for drought risk
assessment among both drought indices.

 The findings suggested that SPINS is capable for drought modeling and can be used for drought
risk assessment.

 The drought characteristics (duration, severity & frequency) extracted from SPINS were more
severe than SPIC at Seoul station.

 The results of univariate return period shows that drought with a return period of 5 years will
have high severity and longer duration in case of SPINS.

 Similarly for bivariate analysis, a drought event with some duration and severity have shorter
return period in case of SPINS.

 These findings may be helpful for drought management and risk assessment under changing
environment.
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