Rice Paddy Ecosystem services for Climate Change using land use and climate change scenarios

World Water Congress 01. Dec. 2021, Daegu

Korea Environment Institute (KEI)

Soojeong Myeong, Sun Hea Hong

Content I. Introduction

II. Methods

III. Results

IV.conclusion

I. Introduction

I. Introduction

onal Water Resources Association (

Ecosystem Services

Source: Oh et al. (1996); Kim et al. (2013); Yoo and Lee (2013); Jung et al. (2014); Navak et al. (2019)

I. Introduction

Land Cover Changes

• Land cover changes by time

	Urban	Agriculture	Forest	Grass	Wetland	Bare soil	Water
1980s	2.09	23.58	66.34	3.75	0.86	1.29	2.08
19905	3.42	21.62	66.25	4.32	0.49	1.68	2.21
20005	6.29	19.34	63.51	7.16	0.33	1.21	2.15

KEI(2019)

• Land transformation from agricultural land cover (1989-2009)

*km*² (%)

2009 1989	Urban	Agriculture	Forest	Grass	Wetland	Bare soil	Water	Changes
agriculture	2,752 (11.6)	15,664 (65.8)	3,358 (14.1)	537 (2.3)	303 (1.3)	605 (2.5)	568 (2.4)	-8,124 (34.2)
23,788		↑						KEI(2016)

ES and Models

- Selected ecosystem services
 - Soil carbon storage
 - Fresh water provision
- Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST)
 - Carbon Storage model
 - Annual Water Yield model

InVEST: The Natural Capital Project, Stanford University et al. 2018. https://naturalcapitalproject.stanford.edu/

Soil Carbon Storage

- Fixes carbon dioxide in the atmosphere and converts it to biomass of rice, and stores carbon as biomass in soil and above-ground parts including roots
- $C_{(x,y,M)} = M \times (D_a + D_b + D_c + D_d)$
 - $C_{(x,y,M)}$: a given cell(x,y) with a land cover
 - *D_a* : carbon stored above ground
 - *D_b* : carbon stored below ground)
 - *D_c* : carbon stored as soil organic carbon)
 - D_d : carbon stored as dead organic matter carbon

Source: Kumar et al. 2018

Soil Carbon Storage

EGIS: Ministry of environment Korea, Environmental Geographic Information Service. 2018. egis.me.go.kr ** Good Practice Guidance for Land Use, Land-Use Change and Forestry (IPCC, 2006)

EI Dra Ervironment In

Annual Water Yield

- Annual water yield by excluding evapotranspiration and soil absorption from precipitation
- The amount of water are available depending on the amount of precipitation in the target area and hydro-sluice conditions, etc.

•
$$Y(x) = \left(1 - \frac{AET(x)}{P(x)}\right) \times P(x)$$

- Y(x): water yield of each cell
- AET(x) : annual actual evapotranspiration
- P(x): annual precipitation

Annual Water Yield

Inside of the model

Temporal Comparison

- Past : 1980-1999 (20 years)
- Current : 2000-2020 (20 years)

World Water Congress International Water Resources Association (IWRA)

Study Area

- Jeonbuk province, South Korea
 - 15.3% of paddy field in Korea
 - 16.2% of rice production in Korea

source: statistics Korea (2012)

CarbonStorage(Mg)

0

Rice paddies contribution

Jeonbuk rice paddies' Soil Carbon Storage

Past	Current
3,036,702ton C / yr	2,733,031ton C / yr
100.96ton C / ha / yr	90.25ton C / ha / yr

Rice paddies contribution

Past	Current
$6,626,775 m^3$	6,200,436 <i>m</i> ³
1,349.7 <i>m</i> ³/ ha / yr	1,282.2 <i>m</i> ³/ ha / yr

Jeonbuk rice paddies'

Annual Water Yield

Soil Carbon Storage

- Rice paddies can capture greenhouse gases such as CO₂ and can be a potential natural carbon storage.
- CH4 and N2O emission from rice paddies can be reduced through sustainable management scheme

Annual Water Yield

- Water yield in rice paddies decreases mainly due to land cover change
- Climate change may have negative impact on water yield in rice paddies
- Rice paddy conservation is necessary for the sustainable water yield

IV. Conclusion

IV. Conclusion

Conclusion

- Paddy fields not only produce rice but also provide various ecosystem services, and these ecosystem services can contribute to climate change mitigation and adaptation.
- The rice paddy ecosystem in the whole of Korea and in the Jeonbuk region, the target of the pilot analysis, is continuously decreasing.
- As a result of the analysis of ecosystem services for `carbon storage' and `Annual water yield' are decreasing.
- It is necessary to preserve the rice fields rather than develop them in consideration of not only future food security but also the various ecosystem services provided by rice fields.

Thank you

10

ATE BE