

# Dynamics of water quality and algal blooms in the regulated Geum River, Korea

2021. 12. 02.

#### Jaeyoung Kim, Dongil Seo




### 1. Introduction



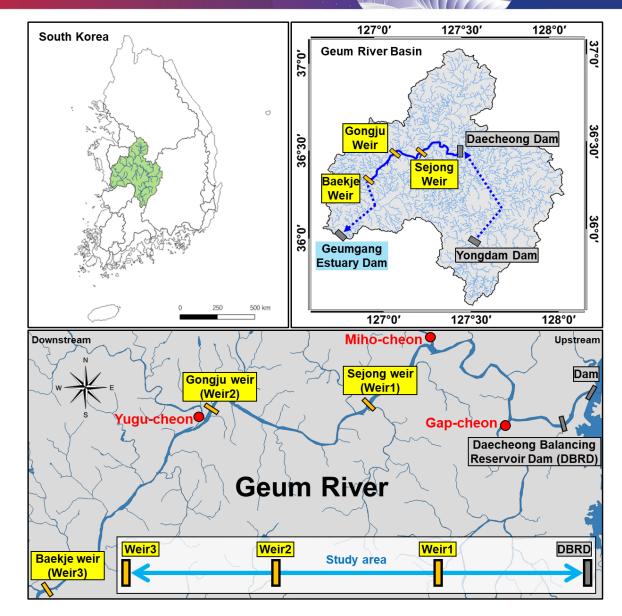
- Research background
  - Harmful algal blooms (HABs) in regulated water body by hydraulic structures
  - The decision of the committee about weir operation and removal





Baekje weir

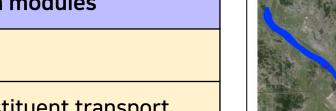
Weir gate operation (2017 ~ 2021)

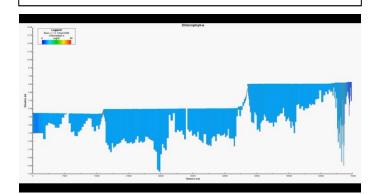

### 1. Introduction

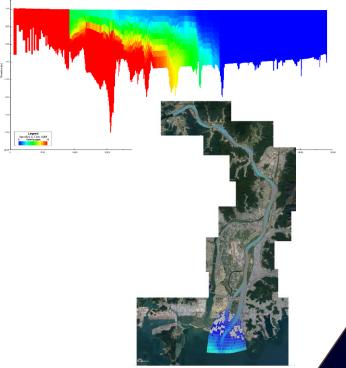


#### Research purpose

- Analysis of dynamics of water quality and harmful algal blooms with hydraulic changes due to weir gate operations in the Geum River
  - To provide expanded insights about water quality interactions and HAB dynamics in the regulated river using modeling approaches
- Factors affecting harmful algal bloom occurrence in a river with regulated hydrology
  - Kim et al. (Journal of Hydrology: Regional Studies, 2021)

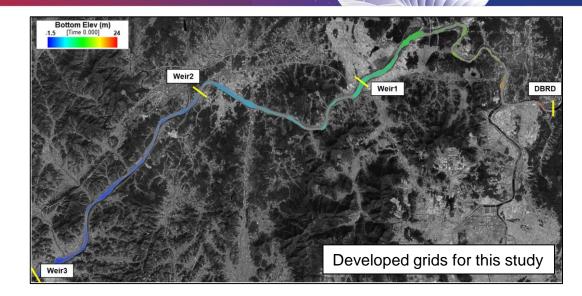

- Study area: Geum River
  - The third largest river
  - Total length: 69.5 km
    - DBRD to Baekje weir
  - Three in-stream weirs
    - Sejong weir (Weir1)
    - Gongju weir (Weir2)
    - Baekje weir (Weir3)

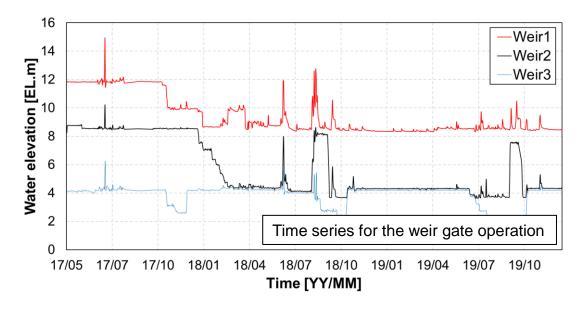




- Environmental Fluid Dynamics Code (EFDC)
  - Multifunctional surface water model
    - Based on the Hydrodynamics module
    - Successful applications to various environments

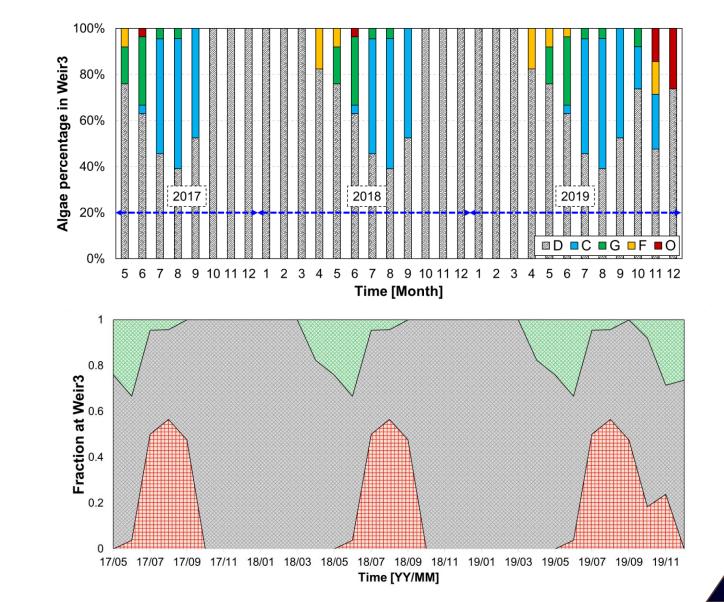
#### **EFDC** main modules

- Hydrodynamics
- Water column constituent transport
- Water quality kinetics
- Sediment erosion and deposition
- Toxic
- Lagrangian Particle Tracking

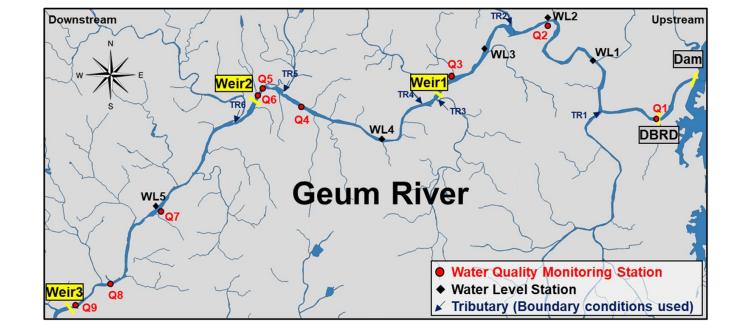




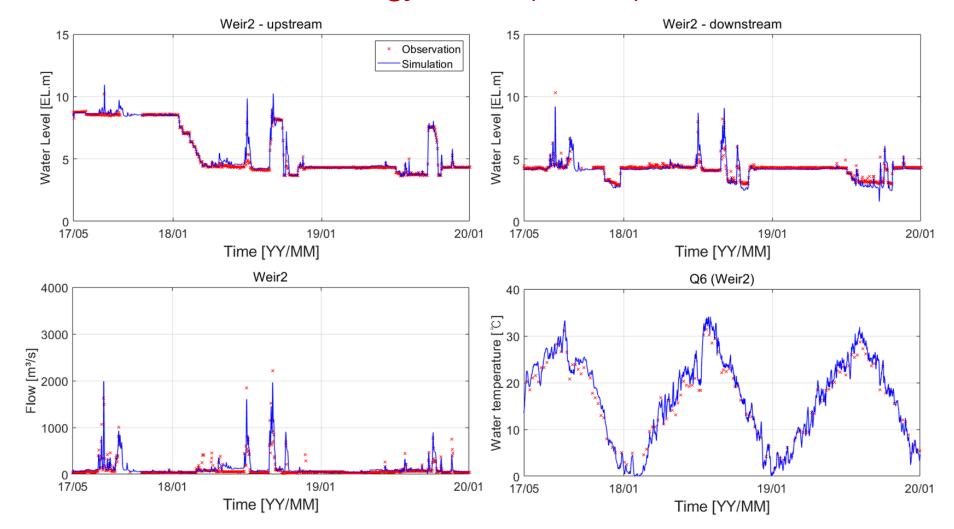

- Model development
  - Grid generation
    - 34,900 grids
  - Initial condition
  - Boundary condition
  - Time series
    - 2017-05-01 to 2019-12-31
  - Parameter estimation
  - Model calibration





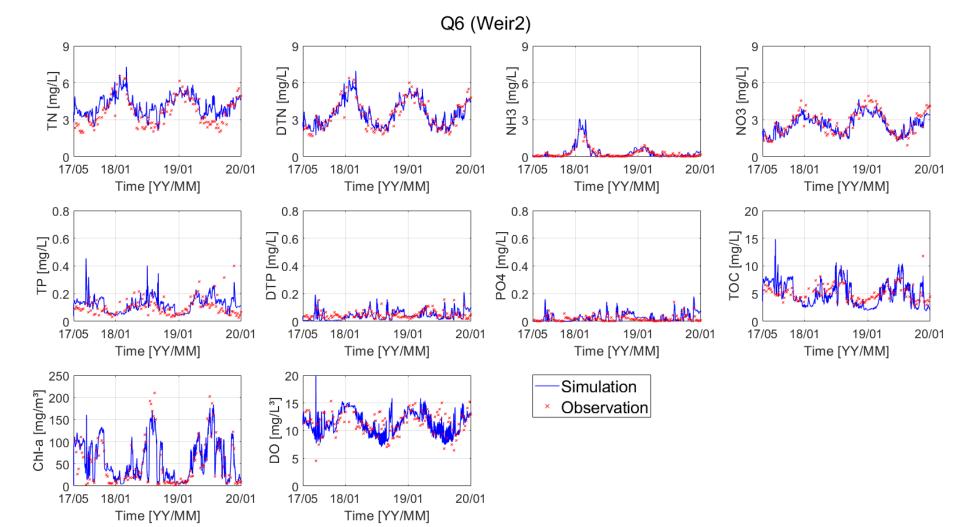

- Algae fraction
  - Diatoms
  - Cyanobacteria
  - Green algae
  - Flagellate
  - Other algae
- Model application
  - Group1: Cyanobacteria
  - Group2: Diatoms
  - Group3: Others




- Model calibration
  - Water level (8 sites)
    - WL (1-5) and Weir (1-3)
  - Flow (3 sites)
    - Weir (1-3)
  - Water temperature (8 sites)
    - Q (2-9)
  - Water quality (8 sites)
    - Q (2-9)

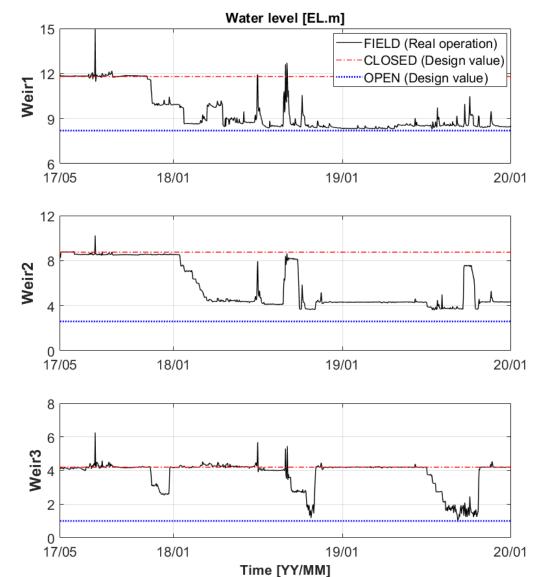







• Calibration results at Gongju weir (Weir2)

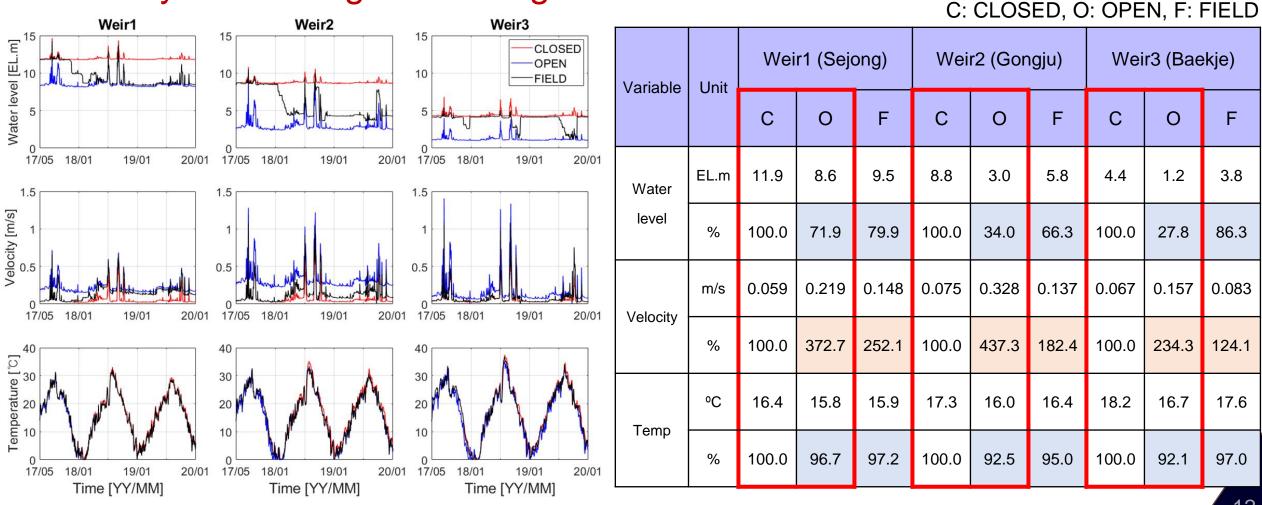





Calibration results at Gongju weir (Weir2)



- Scenario development
  - Weir gate operation scenarios
    - FIELD: Calibrated condition
    - CLOSED: Maintaining water levels
    - OPEN: Weir gate opening


| Scenario                 | Weir1<br>(Sejong)         | Weir2<br>(Gongju) | Weir3<br>(Baekje) |  |  |  |
|--------------------------|---------------------------|-------------------|-------------------|--|--|--|
| CLOSED<br>(Design value) | 11.80 EL.m                | 8.75 EL.m         | 4.20 EL.m         |  |  |  |
| OPEN<br>(Design value)   | 8.20 EL.m                 | 2.60 EL.m         | 1.00 EL.m         |  |  |  |
| FIELD                    | Field operation condition |                   |                   |  |  |  |





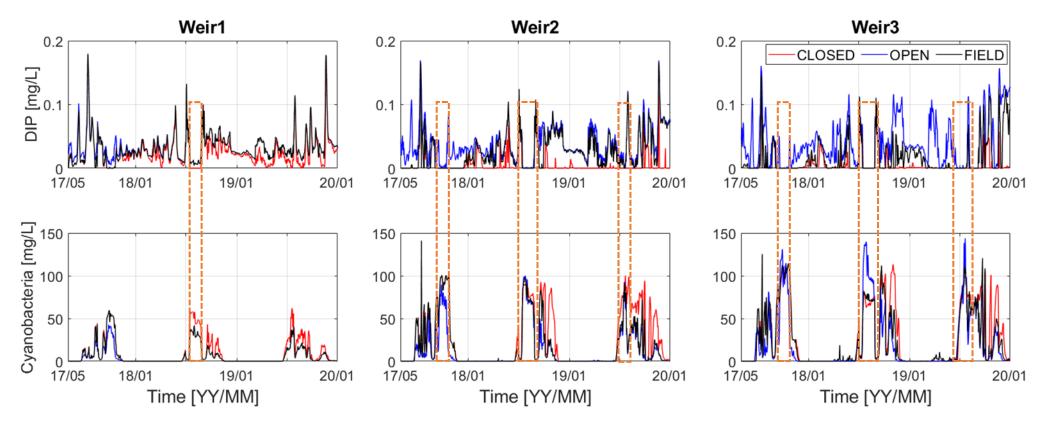


#### Physical changes due to gate controls





#### • Water quality changes due to gate controls

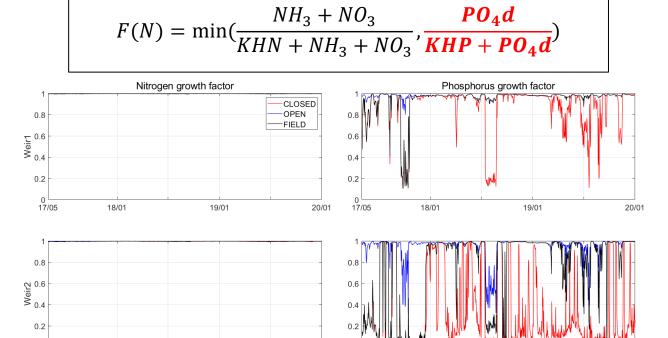





| Variable | Unit              | Weir1  |       | Weir2 |        |       | Weir3 |        |       |       |
|----------|-------------------|--------|-------|-------|--------|-------|-------|--------|-------|-------|
|          |                   | CLOSED | OPEN  | FIELD | CLOSED | OPEN  | FIELD | CLOSED | OPEN  | FIELD |
| тос      | mg/L              | 4.18   | 3.70  | 3.81  | 5.80   | 3.95  | 4.58  | 6.22   | 4.61  | 5.59  |
|          | %                 | 100.0  | 88.5  | 91.1  | 100.0  | 68.2  | 79.1  | 100.0  | 74.0  | 89.7  |
| TN       | mg/L              | 4.04   | 4.03  | 4.02  | 4.09   | 4.03  | 4.05  | 3.99   | 4.12  | 4.06  |
|          | %                 | 100.0  | 99.6  | 99.5  | 100.0  | 98.6  | 98.9  | 100.0  | 103.1 | 101.7 |
| DIN      | mg/L              | 3.08   | 3.18  | 3.15  | 2.68   | 3.07  | 2.93  | 2.38   | 2.96  | 2.64  |
| DIN      | %                 | 100.0  | 103.1 | 102.1 | 100.0  | 114.9 | 109.6 | 100.0  | 124.5 | 110.8 |
| DO       | mg/L              | 11.2   | 10.4  | 10.6  | 12.6   | 10.7  | 11.5  | 11.6   | 11.0  | 11.8  |
| DO       | %                 | 100.0  | 92.6  | 94.7  | 100.0  | 84.9  | 91.3  | 100.0  | 94.4  | 101.3 |
| TP       | mg/L              | 0.099  | 0.099 | 0.099 | 0.112  | 0.110 | 0.111 | 0.105  | 0.125 | 0.110 |
| IF       | %                 | 100.0  | 99.9  | 99.8  | 100.0  | 98.8  | 99.2  | 100.0  | 118.7 | 104.8 |
| DIP      | mg/L              | 0.025  | 0.034 | 0.032 | 0.007  | 0.038 | 0.027 | 0.006  | 0.038 | 0.016 |
|          | %                 | 100.0  | 137.0 | 128.6 | 100.0  | 547.0 | 383.9 | 100.0  | 688.5 | 279.7 |
| Chl-a    | mg/m <sup>3</sup> | 36.9   | 28.4  | 30.4  | 69.1   | 38.5  | 49.2  | 65.3   | 48.7  | 58.9  |
|          | %                 | 100.0  | 77.0  | 82.3  | 100.0  | 55.6  | 71.1  | 100.0  | 74.6  | 90.1  |
| Cyano*   | mg/m <sup>3</sup> | 20.4   | 12.0  | 14.5  | 51.6   | 26.0  | 36.9  | 58.1   | 43.1  | 50.2  |
|          | %                 | 100.0  | 58.9  | 71.0  | 100.0  | 50.4  | 71.5  | 100.0  | 74.1  | 86.4  |

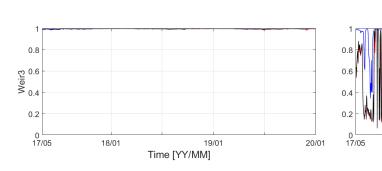
Cyano\*: Average Chl-a concentration over certain periods: (1) 2017-06-22 to 2017-11-17, (2) 2018-06-24 to 2018-11-18, and (3) 2019-06-24 to 2019-12-02

- After weir gate opening
  - DIP depletion
  - At Weir3, maximum cyanobacteria increased up to 2.2 times




### Algal growth

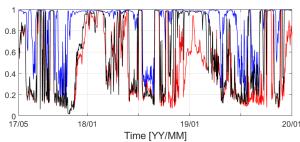
• 
$$P = PM \cdot F(N) \cdot F(L) \cdot F(T)$$


- *P*: The growth rate (1/day)
- *PM*: The maximum growth rate under optimal conditions (1/day)
- *f*(*N*): The effect of suboptimal nutrient concentration (0 ~ 1)
  Based on Liebig's "Law of the minimum"
- *f*(*I*): The effect of suboptimal light intensity (0 ~ 1) Based on "Steele's function"
- *f*(*T*): The effect of suboptimal temperature (0 ~ 1)
  Based on "Gaussian probability curve"

- Nutrient growth factor
  - Regardless of the scenarios
    - At Weir1: Highest
    - At Weir3: Lowest
  - Regardless of the locations
    - In OPEN: Highest
    - In CLOSED: Lowest
    - 111 ~ 402 % (1.7 times)
  - Weir gate opening can increase the algal growth potential
    - In terms of nutrients



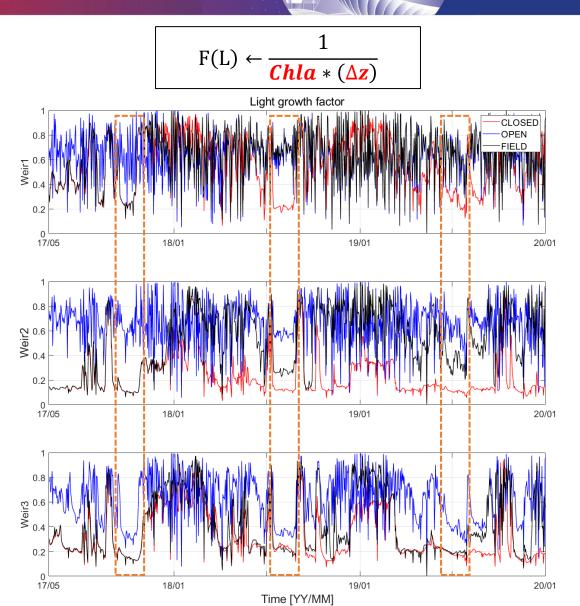
17/05


20/01

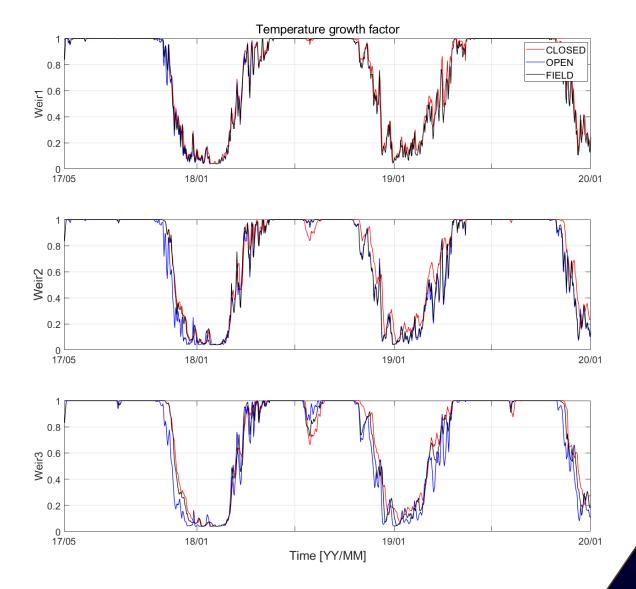


19/01

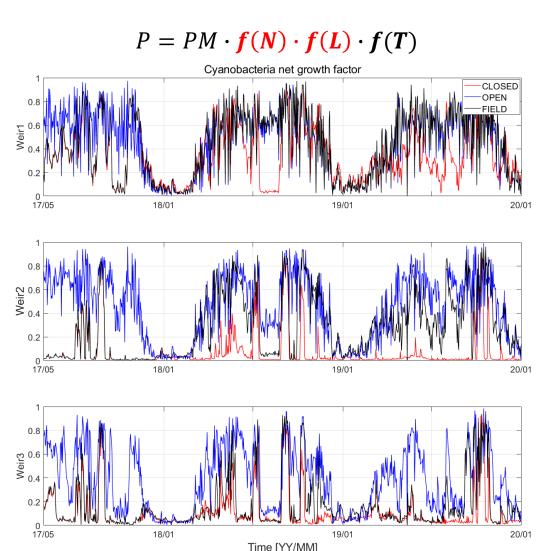
0


18/01




19/01

 $20/0^{-1}$ 


- Light growth factor
  - After weir gate opening
    - 103 ~ 339 % (1.7 times)
    - Due to reduced water depth
  - Excessive algal growth caused self-shading
  - Weir gate opening can increase the algal growth potential
    - In terms of light availability



- Temperature growth factor
  - After weir gate opening
    - Average -3.2% or -0.031
  - Negligible temperature changes



- Net growth factor
  - After weir gate opening
    - 134 ~ 696 % (2.4 times)
    - Increased nutrient growth factor
      - Increased DIP concentrations
    - Increased light growth factor
      - Decreased water depth
  - Physical changes increased the algal growth potential





- Cyanobacteria proliferation in the summer season
  - Decreased hydraulic residence time (HRT)
  - Increased algal growth potential (AGP)
  - AGP > HRT
- To verify and quantify "AGP > HRT"
  - Track cyanobacterial particles
    - Lagrangian Particle Tracking module
  - Measure HRT of each cyanobacterial particle
  - Calculate AGP of each cyanobacterial particle

| No. | Year | Input Day | # Particle |  |
|-----|------|-----------|------------|--|
| 1   |      | 140       | 100        |  |
| 2   | 2017 | 145       | 100        |  |
| 3   |      | 150       | 100        |  |
| 4   | 2018 | 440       | 100        |  |
| 5   |      | 445       | 100        |  |
| 6   |      | 450       | 100        |  |
| 7   |      | 455       | 100        |  |
| 8   |      | 460       | 100        |  |
| 9   |      | 465       | 100        |  |
| 10  |      | 470       | 100        |  |
| 11  |      | 475       | 100        |  |
| 12  |      | 480       | 100        |  |
| 13  | 2019 | 805       | 100        |  |
| 14  |      | 810       | 100        |  |
| 15  |      | 815       | 100        |  |

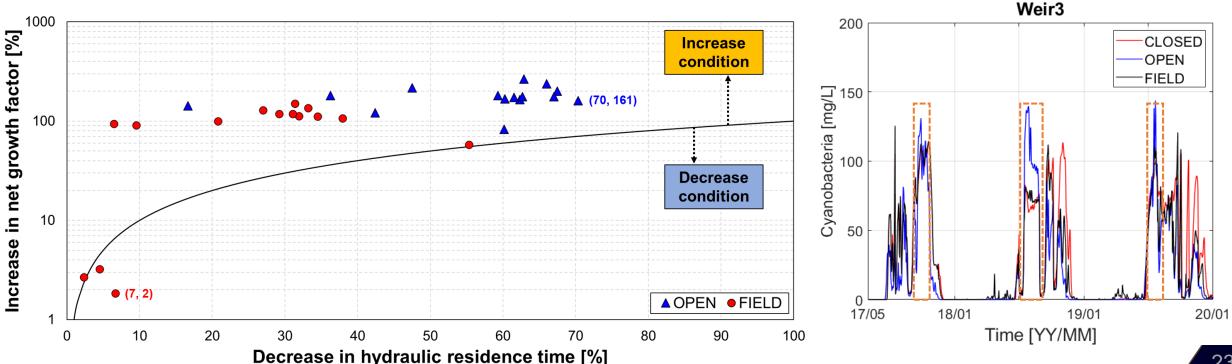




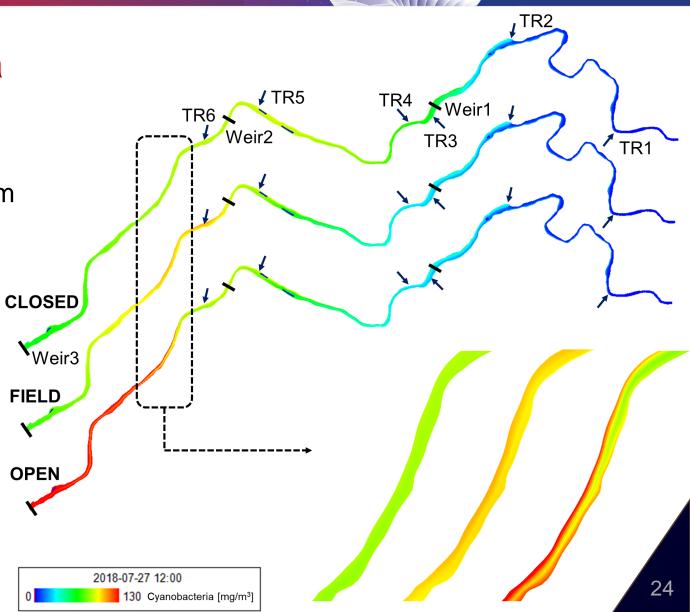
22

#### CLOSED




OPEN




| No. Year | Input<br>Day | Residence time [day] |      |       | Net growth factor |       |       |       |
|----------|--------------|----------------------|------|-------|-------------------|-------|-------|-------|
|          |              | CLOSED               | OPEN | FIELD | CLOSED            | OPEN  | FIELD |       |
| 1        |              | 140                  | 20.5 | 7.6   | 19.2              | 0.139 | 0.507 | 0.141 |
| 2        | 2017         | 145                  | 21.4 | 7.0   | 20.4              | 0.130 | 0.391 | 0.134 |
| 3        |              | 150                  | 23.0 | 6.8   | 22.5              | 0.146 | 0.380 | 0.150 |
| 4        |              | 440                  | 20.6 | 7.0   | 13.8              | 0.141 | 0.477 | 0.332 |
| 5        | 445<br>450   | 445                  | 18.8 | 7.7   | 13.3              | 0.138 | 0.389 | 0.301 |
| 6        |              | 450                  | 17.8 | 6.8   | 12.1              | 0.144 | 0.394 | 0.305 |
| 7        |              | 455                  | 18.1 | 6.8   | 11.3              | 0.154 | 0.407 | 0.318 |
| 8        | 2018 46      | 460                  | 16.9 | 5.6   | 11.1              | 0.159 | 0.438 | 0.335 |
| 9        |              | 465                  | 16.1 | 6.0   | 11.1              | 0.156 | 0.430 | 0.340 |
| 10       |              | 470                  | 14.0 | 5.6   | 11.1              | 0.164 | 0.440 | 0.329 |
| 11       |              | 475                  | 9.6  | 5.5   | 9.0               | 0.177 | 0.392 | 0.344 |
| 12       |              | 480                  | 5.3  | 4.4   | 4.8               | 0.203 | 0.493 | 0.389 |
| 13       |              | 805                  | 12.6 | 6.6   | 8.7               | 0.134 | 0.423 | 0.335 |
| 14       | 2019         | 810                  | 9.4  | 6.0   | 6.9               | 0.140 | 0.393 | 0.320 |
| 15       |              | 815                  | 9.4  | 3.8   | 4.2               | 0.206 | 0.376 | 0.325 |
| Mean     |              | 15.6                 | 6.2  | 12.0  | 0.155             | 0.422 | 0.293 |       |



- Assessment of algal growth condition
  - Increase in net growth factor compared to CLOSED
  - Decrease in hydraulic residence time compared to CLOSED
  - Isocline: no net change



- Distribution of cyanobacteria
  - After weir gate opening
    - Improvement of HABs upstream
    - Severe HABs occurred downstream
      - Due to increased water velocity
    - Strength of the lateral distribution
      - Due to enhanced central flow



#### 4. Conclusion



- Control factors of Algal growth in the Geum River
  - DIP availability
  - Residence time and water depth
- Hydrologic regulations may not improve water quality and guarantee HAB improvement
  - Increased water velocity accelerates the migration of pollutants toward downstream
  - Reducing HABs will likely require a reduction in the pollution load



## Thank you