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@/ Part I : Provides an overview of the Shallow Water Equation(SWE) and the
Riemann problem.

@/ Part II : We check the application of the Riemann solver of the first-order
accuracy method and the problem that occurs when the high-

accuracy method is applied.

Part III : The model is verified through the application of the experimental
channels example with actual experimental values.
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Shallow water wave equations £

The shallow water wvae equations, given by

ht + (U,h)x =0

2 1 2| _
(uh)t+<hu +2gh> =0

X

Is an example of a system of equations written in conservative form. More generally, we can write PDESs in
conservative form as

g + (uh), =0

These are typically derived form conservation laws for mass, momentum, energy, species, and so on.

Based on solving the conservative form of the shallow water wave equations using a finite volume method.



Finite volume method

Assume a conservation law of the form

q:+ (@) =0

Define cell averages over the interval C; = [x;_1/2, Xi41/2]
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QF =5 ), 960 ta)

How does the average evelve?
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Finite volume method

Evolution of the cell average value:

d
&L_ a0y dx = f ((xi-1/2:1)) = F@(xiraya )

' Integrate in time

fCi q(x, tpiq) dx = fci q(x, ty) dx
+ ft':‘“ lf (q(xi—l/z;t)) —f (q(xiﬂ/z, t))] dt



Finite volume method

Using numerical fluxes, we use the update formula:

At
{H-l — an — E[ 1n+1/2 — 1n—1/2]

Written as

QI -qQf _ Fi%1/2=Fi—1 —0
At At

this form resemble the conservation law:

qr+ f(@) =0



Numerical fluxes

We want to approximate the numerical flux.

F' ,, = 1 tn+1f(q(x-_1 5 t)) dt
i-1/ At 0 -1/

For an explicit time stepping scheme, we try to find formulas for the flux of the form

i~12 = F(Qf', QL)

Qi—2 Qi+1

Qi—1




Riemann problem

At each cell interface, solve the hyperbolic problem with special initial data, i.e.

q:+ (@) =0

subject to

Q-1 X>Xi_1)2
x,0) =
1(x,0) Qiv1 X <Xj_1,2

Qi—2 Qi+1

Qi-1

Xi-1/2



Riemann problem

Xi-1/2
Numerical flux at cell interface is then approximated by

Fi12=f(q")

This is the classical Godunov approach for solving hyperbolic conservation laws.

 Resolves shocks and rarefactions



Using Riemann solvers

Lax—Friedrichs (first-order scheme)

The Lax—Friedrichs method, named after Peter Lax and Kurt O. Friedrichs, is a numerical method for the
solution of hyperbolic partial differential equations based on finite differences. One can view the Lax—Friedrichs

method as an alternative to Godunov's scheme, where one avoids solving a Riemann problem at each cell
interface, at the expense of adding artificial viscosity.

HLLC (first-order scheme)

The HLLC (Harten-Lax-van Leer-Contact) solver was introduced by Toro. It restores the missing Rarefaction

wave by some estimates, like linearisations, these can be simple but also more advanced exists like using the
Roe average velocity for the middle wave speed. They are quite robust and efficient but somewhat more
diffusive.

MUSCL Hancock TVD (Higher-order scheme)



Using Riemann solvers

= Generation of a dry bed
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Cell averages and piecewise Cell averages and piecewise liner
constant reconstruction: reconstruction:
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After evelution: After evelution:
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Using Riemann solvers

Cell averages and piecewise liner
reconstruction:

Where solution is not smooth, adding slope \
corrections gives oscillations. /

Limit the slope based on the behavior of the
solution.

Want to use slope where solution is smooth for
“second-order” accuracy

After evelution:
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As a dam collapse experiment performed by Fraccarollo and Toro (1995), it was evaluated as an example to
evaluate the shock wave generated during dam collapse and the numerical instability generated in a dry

channel, and is used as a verification example in many studies.
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Application to

< Modeling condition>

Size : 4m x 2m

Upstream depth : 0.6m
Downstream depth : dry state
Upstream boundary

: closed boundary
Downstream boundary

: free boundary

< Observation point >

-5A : x = 0.18m, y =1.00m
C:x=048m, y = 0.40m
4:x=100m,y=1.16m
O:x=1.00m,y=1.00m

8A :x =1.722m, y = 1.00m
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RMSE(Root Mean Square Error)

Tseng and Kim et al. .
POINT Chu(2000) (2009) Simulated
-5A 0.0088 0.0084 0.0073
C 0.0110 0.0111 0.0089
4 0.0465 0.0352 0.0331
(0 0.0773 0.0645 0.0648
8A 0.0176 0.0144 0.0155

* The flow prediction results in the upstream reservoir were high, and it was confirmed that there was no significant difference in

accuracy for other sections as compared with the results of other simulations.
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