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Plan

Part Ⅰ : Provides an overview of the Shallow Water Equation(SWE) and the 

Riemann problem.

Part Ⅱ : We check the application of the Riemann solver of the first-order 

accuracy method and the problem that occurs when the high-

accuracy method is applied.

Part Ⅲ : The model is verified through the application of the experimental 

channels example with actual experimental values.



Shallow water wave equations

The shallow water wvae equations, given by

Is an example of a system of equations written in conservative form.  More generally, we can write PDEs in 

conservative form as

ℎ𝑡 + 𝑢ℎ 𝑥 = 0

𝑢ℎ 𝑡 + ℎ𝑢2 +
1

2
𝑔ℎ2

𝑥

= 0

𝑞𝑡 + 𝑢ℎ 𝑥 = 0

These are typically derived form conservation laws for mass, momentum, energy, species, and so on.

Based on solving the conservative form of the shallow water wave equations using a finite volume method.



Finite volume method

Assume a conservation law of the form

Define cell averages over the interval 

𝑞𝑡 + 𝑓 𝑞 𝑥 = 0

𝐶𝑖 = [𝑥𝑖−1/2, 𝑥𝑖+1/2]

𝑄𝑖
𝑛 =

1

Δ𝑥
න
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𝑞(𝑥, 𝑡𝑛) 𝑑𝑥

How does the average evelve?
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𝑑𝑡
න
𝐶𝑖

𝑞(𝑥, 𝑡) 𝑑𝑥 = −න
𝐶𝑖

𝑑

𝑑𝑥
𝑓 𝑞 𝑥, 𝑡

= 𝑓(𝑞(𝑥𝑖−1/2), 𝑡)) − 𝑓(𝑞(𝑥𝑖+1/2, 𝑡))



Finite volume method

Evolution of the cell average value:

𝑑

𝑑𝑡
න
𝐶𝑖

𝑞(𝑥, 𝑡) 𝑑𝑥 = 𝑓 𝑞 𝑥𝑖−1/2, 𝑡 − 𝑓(𝑞 𝑥𝑖+1/2, 𝑡 )

𝐶𝑖׬
𝑞(𝑥, 𝑡𝑛+1) 𝑑𝑥 = 𝐶𝑖׬

𝑞(𝑥, 𝑡𝑛) 𝑑𝑥

𝑡𝑛׬+
𝑡𝑛+1 𝑓 𝑞 𝑥𝑖−1/2, 𝑡 − 𝑓 𝑞 𝑥𝑖+1/2, 𝑡 𝑑𝑡

Integrate in time



Finite volume method

Using numerical fluxes, we use the update formula:

𝑄𝑖
𝑛+1 = 𝑄𝑖

𝑛 −
Δ𝑡

Δ𝑥
[𝐹1+1/2

𝑛 − 𝐹1−1/2
𝑛 ]

Written as

𝑄𝑖
𝑛+1−𝑄𝑖

𝑛

Δ𝑡
−

𝐹1+1/2
𝑛 −𝐹1−1/2

𝑛

Δ𝑡
= 0

this form resemble the conservation law:

𝑞𝑡 + 𝑓 𝑞 𝑥 = 0



Numerical fluxes

𝑄𝑖−2 𝑄𝑖−1 𝑄𝑖

𝑄𝑖+1

We want to approximate the numerical flux.

𝐹𝑖−1/2
𝑛 ≈

1

Δ𝑡
න
𝑡𝑛

𝑡𝑛+1

𝑓 𝑞 𝑥𝑖−1/2, 𝑡 𝑑𝑡

For an explicit time stepping scheme, we try to find formulas for the flux of the form

𝐹𝑖−1/2
𝑛 = ℱ(𝑄𝑖

𝑛, 𝑄𝑖−1
𝑛 )



Riemann problem

At each cell interface, solve the hyperbolic problem with special initial data, i.e.

𝑞𝑡 + 𝑓 𝑞 𝑥 = 0

subject to

𝑞 𝑥, 0 = ൝
𝑄𝑖−1 𝑥 > 𝑥𝑖−1/2
𝑄𝑖+1 𝑥 < 𝑥𝑖−1/2

𝑥𝑖−1/2

𝑄𝑖−2 𝑄𝑖−1 𝑄𝑖

𝑄𝑖+1



Riemann problem

Numerical flux at cell interface is then approximated by 

𝑥𝑖−1/2

𝑄𝑖−1

𝑄𝑖

𝑞∗

t > 0

This is the classical Godunov approach for solving hyperbolic conservation laws.

• Resolves shocks and rarefactions

𝐹𝑖−1/2 = 𝑓(𝑞∗)



Using Riemann solvers

• Lax–Friedrichs (first-order scheme)

• HLLC (first-order scheme)

• MUSCL Hancock TVD (Higher-order scheme)

The Lax–Friedrichs method, named after Peter Lax and Kurt O. Friedrichs, is a numerical method for the 

solution of hyperbolic partial differential equations based on finite differences. One can view the Lax–Friedrichs 

method as an alternative to Godunov's scheme, where one avoids solving a Riemann problem at each cell 

interface, at the expense of adding artificial viscosity.

The HLLC (Harten-Lax-van Leer-Contact) solver was introduced by Toro. It restores the missing Rarefaction 

wave by some estimates, like linearisations, these can be simple but also more advanced exists like using the 

Roe average velocity for the middle wave speed. They are quite robust and efficient but somewhat more 

diffusive.



Using Riemann solvers
▪ Generation of a dry bed

t=0 sec

t=5.0 sec depth

depth

velocity

velocity



Using Riemann solvers



Using Riemann solvers
▪ Dambreak on dry bed

t=0 sec depth velocity

t=4.0 sec depth velocity



Using Riemann solvers



Using Riemann solvers
Cell averages and piecewise 

constant reconstruction:

After evelution:

Cell averages and piecewise liner 

reconstruction:

After evelution:



Using Riemann solvers

Want to use slope where solution is smooth for 

“second-order” accuracy

Where solution is not smooth, adding slope 

corrections gives oscillations.

Limit the slope based on the behavior of the 

solution.

𝜎𝑖
𝑛 =

𝑄𝑖+1
𝑛 − 𝑄𝑖

𝑛

Δ𝑥
Φ𝑖
𝑛

Cell averages and piecewise liner 

reconstruction:

After evelution:



Application to experimental channel

Top view Side view

-5A O

4

8A

C

As a dam collapse experiment performed by Fraccarollo and Toro (1995), it was evaluated as an example to 

evaluate the shock wave generated during dam collapse and the numerical instability generated in a dry 

channel, and is used as a verification example in many studies.



Application to experimental channel

• Size : 4m x 2m
• Upstream depth : 0.6m
• Downstream depth : dry state
• Upstream boundary

: closed boundary
• Downstream boundary

: free boundary

< Observation point > 

-5A : x = 0.18m, y =1.00m
C : x = 0.48m, y = 0.40m
4 : x = 1.00m, y = 1.16m
O : x = 1.00m, y = 1.00m

8A : x = 1.722m, y = 1.00m   

OC

8A

4

-5A

< Modeling condition> 



Application to experimental channel



Application to experimental channel
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8A
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Application to experimental channel

RMSE(Root Mean Square Error)

POINT
Tseng and 
Chu(2000)

Kim et al. 
(2009)

Simulated

-5A 0.0088 0.0084 0.0073

C 0.0110 0.0111 0.0089

4 0.0465 0.0352 0.0331

O 0.0773 0.0645 0.0648

8A 0.0176 0.0144 0.0155

• The flow prediction results in the upstream reservoir were high, and it was confirmed that there was no significant difference in 
accuracy for other sections as compared with the results of other simulations.
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