IWRA's XVII WORLD WATER CONGRESS

제 17차 IWRA 세계물총회

29 November – 3 December 2021 EXCO, Daegu, Republic of Korea

DAEGU

Application of the artificial neural network to regional frequency analysis for estimating rainfall quantiles at ungauged sites

> HANBEEN KIM, TAEREEM KIM, **JOOHYUNG LEE**, JUN-HAENG HEO Hydrology and Water Resources System Lab. Yonsei University

- 1. Background & Objectives
- **2.** Methodology
- **3.** Application
- 4. Results

- 1. Background & Objectives
- **2.** Methodology
- **3.** Application
- 4. Results

- Regional frequency analysis
 - To reduce uncertainties due to short data length
 - Can determine more reliable quantiles of the site by using all sites' data in a region
- Widely applied approaches of regional frequency analysis
 - Index flood method
 - Regression technique

- Artificial neural network model (ANN)
 - Suggested by McCulloch and Pitss (1943)
 - Sensitive to model structure and input data

- Objectives
 - Determination of better ANN model to estimate quantiles
 - The assessment of performances for three different regional frequency analysis methods

- 1. Background & Objectives
- **2.** Methodology
- **3.** Application
- 4. Results

- Quantile regression technique (QRT-ANN)
 - Estimates quantiles directly for various return periods
 - Output layer of ANN model is quantiles at each rainfall gauging site

- Parameter regression technique (PRT-ANN)
 - Estimates the parameters of probability distribution function
 - Quantiles are then estimated with the output of model (parameters)

- Extreme gradient boosting algorithm
 - Proposed by Chen and Guestrin (2016)
 - Winning solution for classification and regression problems
 - Extreme gradient boosting refers to a class of ensemble machine learning algorithms
 - Uses weighted boosting algorithm to make prediction
 - Many hyperparameters to be optimized

- Evaluation tools
 - Relative root mean square error (RRMSE)

•
$$RRMSE_i(F) = \left[\frac{1}{N_{sim}} \sum_{m=1}^{N_{sim}} \left\{\frac{Q_i^{\widehat{[m]}(F)} - Q_i(F)}{Q_i(F)}\right\}^2\right]^{1/2}$$

Root mean square error (RMSE)

•
$$RMSE_i(F) = \left[\frac{1}{N_{sim}} \sum_{m=1}^{N_{sim}} \left\{ Q_i^{[m]}(F) - Q_i(F) \right\}^2 \right]^{1/2}$$

where $Q_i^{[m]}(F)$ and $Q_i(F)$ are quantiles for a given non-exceedance probability F in the m^{th} simulation and observation at site i

- Evaluation tools
 - Bias
 - $b_i(F) = \frac{1}{N_{sim}} \sum_{m=1}^{N_{sim}} Q_i^{\widehat{[m]}(F)} Q_i(F)$
 - Relative bias

•
$$Rb_i(F) = \frac{1}{N_{sim}} \sum_{m=1}^{N_{sim}} \frac{Q_i^{\widehat{(m)}(F)} - Q_i(F)}{Q_i(F)}$$

- 1. Background & Objectives
- **2.** Methodology
- **3.** Application
- 4. Results

Flow chart

- Rainfall gauging site
 - Where daily annual maximum precipitation data fits into generalize extreme value(GEV) distribution

examined by at-site frequency analysis

- shape parameter $\beta < 0$, $x_0 + \alpha/\beta \le x < \infty$
- Also has over 30 years of record length
- Select 113 sites among 615 sites in South Korea

- Input variables
 - Variables that are suitable for Monte Carlo simulation
 - Topographical and hydrological data

Variables	Description
LAT	Latitude (°)
LONG	Longitude (°)
ALT	Altitude (m)
AM data	daily annual maximum of recent 30 years

- Designed conditions
 - Factors that affect the accuracy of regional frequency analysis
 - Heterogeneity measure (*H*)
 - Number of sites in a region (*N*_{site})

- 9 different Monte Carlo simulations
 - 3 cases in terms of *H* (*H* = 1, 2, 3)
 - 3 cases in terms of N_{site} ($N_{site} = 5, 10, 15$)

- Region 1 ($H = 1, N_{site} = 5$)
- Region 2 ($H = 2, N_{site} = 5$)
- Region 3 (H = 3, $N_{site} = 5$)
- Region 4 ($H = 1, N_{site} = 10$)
- Region 5 (H = 2, $N_{site} = 10$)
- Region 6 (H = 3, $N_{site} = 10$)
- Region 7 ($H = 1, N_{site} = 15$)
- Region 8 ($H = 2, N_{site} = 15$)
- Region 9 (H = 3, $N_{site} = 15$)

- 1. Background & Objectives
- **2.** Methodology
- **3.** Application
- 4. Results

- PRT-ANN versus QRT-ANN
 - Region 1, 2, and 3

• Region 4, 5, and 6

• Region 7, 8, and 9

• Monte Carlo simulation 1, 2, and 3

• Monte Carlo simulation 4, 5, and 6

Monte Carlo simulation 7, 8, and 9

- 1. Background & Objectives
- **2.** Methodology
- **3.** Application
- 4. Results

- PRT-ANN was more accurate than QRT-ANN
 - QRT-ANN predicted 11 output variables while PRT-ANN predicted 3 output variables
 - PRT-ANN showed the less uncertainty in estimating quantiles than QRT-ANN
- Statistical method
 - For N_{site} = 5, performance difference between at-site frequency analysis and index flood method is getting close with *H* increases from 1 to 3

- Statistical method
 - For N_{site} = 10 and 15, at-site frequency analysis shows better performance than index flood method at *T* ≤ 5 years and index flood method shows better performance than at-site frequency analysis at *T* > 5 years regardless of *H*
- Data driven method
 - PRT-ANN shows the better performance than PRT-XGB for higher return period ($T \ge 5$ years)
 - Average performance of PRT-ANN is better than PRT-XGB

- Statistical method versus data driven method
 - Both machine learning models show better performance than at-site frequency analysis and index flood

method

- Future studies
 - Frequency analysis of climate change scenario
 - Performance analysis of index flood method, population index flood, and ANN models with nonstationary rainfall data

Thank you