Development of Measured Data Based Nomograph for Flood Warning System of Small Streams

Tae Sung Cheong

2021. 11. 30.

1	I	Backgrounds	3
2	Ī	Data Based FEWS	7
3	Ī	Flood Early Warning Framework	14
4	ī	Future Works	21

1 Backgrounds

Extreme rainfalls (>100mm/h) is increasing due to climate change

• Frequency and occurrence area of extreme rainfalls are increased during 92 years (1927~2019)

1 Backgrounds

Flood impacts is changing by extreme rainfalls

• Extreme rainfalls formed by localized heavy rainfall increasing flood damages in the small streams

Damages(M\$)	Total	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Darriages(ivių)	Total	2000	2010	2011	2012	2010	2014	2013	2010	2017	2010
Rivers and Small Stream	6,841	938	577	2,266	1,458	413	1.05	3.28	621	299	271
Small Stream	2,896	431	262	878	661	237	0.42	2.48	165	146	113
Ratio (%)	42.3	45.9	45.4	38.7	45.3	57.4	40.0	75.6	26.6	48.8	42.0
• Rivers & Si			,	` ′	9km)	Loca	onal River Il River Il Stream		54%	41%	

1 Backgrounds

Development of small stream disaster risk reduction technology

• Three key technologies solving the most pressing issues facing the climate changes

- ➤ Flood Warning System Related Technologies: nomograph, function etc.
- ➤ Design Codes Related Technologies: numerical, statistical models etc.
- > Legislations Related Technologies : assessment, determination etc.

Enhancement of small stream flood early warning system (SSFEWS)

• Ministry of Interior and Safety developed the system during 5 years (12~16), NDMI evaluates it

Issues for collecting measured data to enhance the SSFEWS

• There are no measurement data in small streams for the following reasons

Development of technology for measuring data in small streams

CCTV based Automatic Discharge Measurement Technology (CADMT) based on SIV

Establishment of technology for measuring data in small streams

• The CADMT was established in Jungsunpil stream

Measurement of hydraulics data by using the CADMT

• The CADMT represent high velocity small streams flow well in flood season

Data acquisition and sharing system

• The web based system was developed to develop technologies and share measured data

Technology to enhance the small stream flood early warning system

• Framework using both technologies of the rainfall-discharge nomograph and the rating curve

Selection of five small stream for test bed

• Development and evaluation of the framework by using measured data from small streams

Selection of five small stream for test bed

Development and evaluation of the framework

0 11	0.	D .	1 6 11
Small	Stream	Basın	Information

Stream	Latitude	Longitude	A_b (km²)	W_b (Km)	S_b	C_b	L_c (Km)	W_c (m)
Jungsunpil	35.65.17 N	129.13.17 W	5.09	1.60	0.058	0.50	3.18	14.00
Sunjang	35.24.04 N	128.55.49 W	13.63	2.17	0.053	0.34	2.14	33.50
Unchon	37.33.15 N	127.70.96 W	6.98	2.01	0.012	0.58	2.88	21.50
Neungmac	37.24.31 N	127.16.81 W	2.41	0.78	0.004	0.25	3.09	9.450
Insu	37.40.20 N	127.00.20 W	3.66	1.17	0.025	0.38	3.12	17.06

Rainfall Station Information for each small stream

Station Name	Latitude	Longitude	Distance (km)	10 yrs. Average Total Annual Rainfall (mm)	Elevation (E L.m)	Start from
Doseo	35.62.03 N	129.14.35 W	183.1	1274.1	123.0	1991
Yangsan	35.30.74 N	129.02.01 W	9.86	1,588.20	6.29	2008
Yeojudaegyo	37.17.43 N	127.38.53 W	6.580	1180.1	51.5	1962
Yongin	37.27.01 N	127.22.18 W	5.830	1293.5	83.0	2005
Uijungbu	37.73.50 N	127.07.50 W	10.4	1544.50	72.0	2001

Development of prediction technology for flood early warning

• Technologies were developed by using measured data from 2017~2020

Evaluation of prediction technology for flood early warning

Technologies were evaluated by using measured data from 2021

Evaluation of prediction technology for flood early warning

• Technologies were evaluated by using measured data from 2021

Small	Peak Disch	arge (m³/s)	arge (m³/s)			
Stream	Measured	Error				
Jungsunpil	4.46	4.74	0.280			
Unchon	2.69	2.65	0.040			
Sunjang	207.74	206.56	1.180			
Insu	13.21	13.38	0.170			
Neungmac	1.43	1.43 1.44				
Small	Peak Disch	arge (m³/s)	_			
Small Stream	Peak Disch	earge (m³/s) Predicted	Error			
			Error 0.030			
Stream	Measured	Predicted				
Stream Jungsunpil	Measured 0.53	Predicted 0.56	0.030			
Stream Jungsunpil Unchon	Measured 0.53 0.82	0.56 0.83	0.030			

4 Future works

Expansion of the CADMT

• NOIS and NDMI will expand the CADMT to about 22,000 small streams (10%)

4 Future works

Development of the DRR technologies based on measured data

• The DRR technologies development by classifying measured and unmeasured streams

