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1. Introduction and Literature Review

Alternative transitions from pre-impoundment to post-impoundment sediment equilibrium. To 

maintain long-term reservoir storage is a management decision (Morris, GL, 2020)



1. Introduction and Literature Review

1.1. Reservoir Sedimentation

When river flows in still water of reservoir, it loses its velocity and sediment carrying capacity.

Riverbed rises due to sediment deposition, which result in storage loss. 

Global annual reservoir storage loss due to sedimentation ranges 0.1–2.3%, with an average value of 

approximately 1% (Wisser et al. 2013).

Sediment deposition in river decrease the flood carrying capacity which 

result in the increasing of inundation area (Nazir et al. 2016).

The construction of eight consecutive weirs along the Nakdong River changed the erosion and sedimentation 

patterns after the Four Major River Restoration Project (FMRRP). 

Sangju Weir (SW) is the uppermost of these eight weirs on Nakdong river.

 Current operating rules at Sangju weir are ambiguous and completely ignores the sedimentation issue (Kim et 

al. 2017).

1.2. Sedimentation Problem in Nakdong River, South Korea



1. Introduction and Literature Review (Contd.)

Significant sediment deposition has been observed upstream of Sangju Weir since it started operating. 

The reservoir operation rules of Sangju Weir focus on provision of high-water stage throughout the year, which 

aggravate the sedimentation deposition (Kim et al. 2017). 

Mechanical dredging has been performed yearly to counter sedimentation, which is very expensive, time 

consuming, and labor-intensive option (Kim et al. 2017; Kim and Julien 2018).



1. Introduction and Literature Review (Contd.)

1.3. Reservoir Suspended Sediment Load (SSL) Inflow Estimation

Hydrographic surveys and sediment rating curves (SRC) are traditional approaches for prediction of reservoir 

sedimentation, but these are associated with substantial inaccuracies and limitations (Furnans and Austin, 2008; 

Heng and Suetsugi, 2013; Gianbattista et al., 2017).

Previous researchers reported various methods linking sediment inflow with hydraulic parameters, geometric 

parameters, and sediment characteristics (Bogen et al., 2003; Costa, 2016).

These methods are mostly site-specific and do not have universal application.

Physically-based hydrological models including Soil and Water Assessment Tool, SWAT (Neitsch et al., 2011), 

Erosion Productivity Impact Calculator, EPIC (Williams, 1989), Water Erosion Prediction Project, WEPP

(Flanagan et al., 2007) permit modelling of sediment and nutrient transport in catchments and reservoirs.

The application of physical models is often event-based and require extensive field data of bathymetry, 

topography, and hydrologic parameters.



1. Introduction and Literature Review (Contd.)

1.4. Machine Learning (ML) Models for Reservoir Sedimentation

Machine learning (ML) models have been applied successfully around the globe in recent reservoir 

sedimentation and fluvial sediment transport studies. 

Aytek and Kişi (2008) proposed genetic programming (GP) approach to form an explicit relationship between 

SSL and water discharge. 

Lafdani et al. (2013) investigated artificial neural networks (ANN) and support vector machine (SVM) models 

to predict daily SSL in Doiraj River, Iran. 

Kumar et al. (2015) used an ANN model for rainfall-runoff-sediment modelling using TRMM-3B42 rainfall 

estimates as input variable. 

Zhao et al. (2017) quantified the impact of climate change and anthropogenic factors on sediment load by 

coupling the dynamic water balance model (DWBM) with ANN. 

Khosravi et al. (2018) quantified hourly sediment load inflow using stand-alone and hybrid ML models at 

Adean catchment, Chile. 



1. Introduction and Literature Review (Contd.)

Malik et al. (2019) evaluated the performance of different ML models for suspended sediment concentration 

(SSC) modeling using the gamma test in the Godavari River basin, India. 

Huang et al. (2019) applied a numerical model in combination with ML models to predict half-hourly SSL in 

the Shi-Men reservoir, Taiwan. 

Chang et al. (2020) proposed an outflow sediment concentration forecasting model by integrating ML 

approaches and time series analysis for density current venting in reservoirs. 

Various methods to counter sedimentation for sustainable use of reservoirs use have been reported including 

sediment routing, sluicing, dredging, and flushing (Mahmood and Mundial, 1987; Tigrek and Aras, 2011; 

Schleiss et al., 2016). 

Sediment flushing involves the increase of flow velocities in the reservoir, followed by lowering of water level 

depending on site conditions, to erode and transport the sediment deposits through low-level outlets (Lai and 

Shen, 1996). 

1.5. Reservoir Sediment Management



1.7. Limitations of Previous Studies

In previous studies, mostly streamflow has been chosen solely as input variable of ML models to predict 

sediment inflows (Aytek and Kişi 2008; Kumar et al. 2015; Malik et al. 2019). 

Khosravi et al. (2018) used three parameters including streamflow, water temperature, and electric conductivity 

as input variables for three ML models to predict SSL. 

None of these studies consider incorporating reservoir operation parameters such as dam outflow and water 

stage for SSL predictions.

 Hence the research and application of ML models for reservoir SSL studies remain deficient. 

Furthermore, these studies evaluated and compared the performance of up to three ML models simultaneously 

for SSL inflow predictions. 

A comprehensive study is required on evaluation of mainstream ML models for SSL inflow predictions and 

linking it with reservoir operation parameters.

1. Introduction and Literature Review (Contd.)



Sediment flushing has been proven successful worldwide to counter and manage reservoir sedimentation. 

 However, the complexity of morphological processes requires extensive knowledge and study of onsite 

constraints for the success of flushing operation. 

A technique is required to calculate sediment flushing parameters of flushing discharge, duration, frequency, 

and drawdown at a dam site.

Research and application of ML techniques and RESCON model on reservoir sediment deposition and removal 

strategies, especially complex sediment flushing processes, are still deficient.

1. Introduction and Literature Review (Contd.)
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2. Identification of Research Gaps

o For reservoir sedimentation studies, mean annual SSL inflow is a crucial input.

o Owing to the complexity and stochastic nature of sedimentation, accurate prediction of 

reservoir SSL inflow is challenging.

o Research and application of ML modelling for reservoir sedimentation are still deficient.

o It is imperative to utilize the robustness, parallelism, and nonlinear mapping ability of ML 

modelling for reservoir SSL prediction.

o Further, extending its application to the RESCON modelling approach is imperative to achieve 

better sediment management in run-of-river hydraulic structures.



3. Objectives of Current Study

o To apply various machine learning models for real-time reservoir SSL inflow prediction using 

reservoir operation and climate variables. 

o To analyze and compare the predictive performances of ML models based on statistical 

evaluation criteria. 

o To demonstrate the performance of the ML models by its application on Sangju Weir, South 

Korea.



4. Artificial Neural Networks – An Overview

¤ Artificial Neural Networks (ANNs) are parallel, nonlinear computational framework consisting of highly interconnected neurons.

¤ The working of ANNs is inspired by working of actual human brain.

¤ ANNs possess certain advantages over other statistical models.

¤ Black-box properties  no prior knowledge of process is required.

¤ Nonlinear activation function  enables it to model complex problems.

¤ Highly robust and adaptable.

¤ Application of ANN in Water Recourses Engineering problem gained popularity in recent past.

¤ Utilization of ANN for optimum reservoir operation, especially reservoir sediment erosion and deposition is promising research area.

¤ In this study, ANNs are employed for sediment deposition 

simulation at Sangju weir, South Korea.



Workflow of Present Research

• Firstly, the input variables were defined for ANN which affect the 
sedimentation most: reservoir stage, inflow and release.

• Graphical data was available for these variables. Digitization software was 
employed for data acquisition.

• Daily reservoir sedimentation data of year 2014 (From IRSEP in Kim et. al. 
(2018)) was used as target variable.

• ANN was created and configured with 3-6-1 framework typically used in water 
resources engineering problems.

• The network was trained with daily (365) values of the year 2014 of the 
variables. 

• The effects of different training algorithms, activation function, and number of 
hidden neurons were investigated.

Defining Input Variables and 

Target Variable

Input Data 

Collection

Reservoir Sedimentation Data 

Acquisition

Create and Configure the 

Network

Train and Validate 

the Network

Use the Network for Simulating 

Sediment Deposition

Sedimentation at Sangju Weir4. Application of ANN for Simulation of Sediment Deposition



5. Adaptive Neuro-Fuzzy Inference System (ANFIS)

¤ An ANFIS is an adaptive neuro-fuzzy mapping algorithm based on TSK* fuzzy inference system [11].

¤ ANFIS offer the combined advantage of both ANN (optimization capability, learning capability, and 

connectionist structure) and fuzzy logic (IF-THEN rule base) in a single framework.

¤ A typical ANFIS network has two identifiable parts: premise, and consequence parts.

¤ The architecture of ANFIS consists of 5 layers (Fig 4).

¤ The first layer, named fuzzification layer receives the input and determines associated membership 

function.

¤ Second layer, the rule layer determines the firing strength of the rules.

¤ Third, the normalization layer normalized the determined firing strengths. 

¤ Fourth layer takes the input in the form of normalized values and the set of consequence parameter.

¤ The last layer takes the defuzzificated values and returns the output of structure.

¤ In this study, eight (8) membership functions have been used and evaluated to compute sedimentation at 

Sangju weir. 

*TSK = Tagaki-Sugeno-Kang Fig. 6: Structure of a  typical ANFIS network



6. Multi-layered Perceptron (MLP)

¤ ANN structures with more than two hidden layers are referred to as deep nets. 

¤ MLP is a very popular deep learning technique which is composed of hidden layers followed by dropout layers. 

¤ The dropout layers assist in avoiding overfitting by bringing a transferability to network (Rynkiewicz, 2019). 



7. Comprehensive Evaluation of Machine Learning Models for Suspended 
Sediment Load Inflow Prediction in Reservoir

Dataset Preparation
Parameter Unit

Statistical properties

Maximum Minimum Mean SD Kurtosis Skewness

Complete dataset

Q m3/s 410.429 5.939 72.258 57.443 9.065 2.752

T ℃ 29.272 -2.611 15.235 8.807 -1.310 -0.250

Qout m3/s 1456.101 0.039 82.435 148.591 8.345 5.815

H m 47.506 45.097 47.079 0.241 3.923 -5.786

SSL tons/day 910.817 800.117 897.147 7.495 3.877 -5.786

Training data

Q m3/s 410.429 5.939 72.258 57.444 9.068 2.752

T ℃ 28.277 -2.611 15.052 8.769 -1.322 -0.265

Qout m3/s 1456.101 0.039 82.435 148.596 8.360 5.816

H m 47.506 45.992 47.079 0.269 3.938 -5.787

SSL tons/day 910.817 835.145 897.150 7.490 3.861 -5.779

Testing data

Q m3/s 410.311 6.286 72.258 57.474 9.121 2.756

T ℃ 29.272 0.953 15.964 8.927 -1.305 -0.202

Qout m3/s 1456.063 0.039 82.435 148.673 8.563 5.825

H m 47.113 45.097 47.011 0.216 3.888 -5.781

SSL tons/day 910.795 800.117 897.145 7.498 3.891 -5.769



7. Comprehensive Evaluation of Machine Learning Models for Suspended 
Sediment Load Inflow Prediction in Reservoir

Performance Indicators
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7. Comprehensive Evaluation of Machine Learning Models for Suspended 
Sediment Load Inflow Prediction in Reservoir

Selection of best input combination

1) SSL = f (Q)

2) SSL = f (Qt-1)

3) SSL= f (Q, T, H, Qout)

4) SSL = f (Qt-1, Tt-1, Ht-1, Qout(t-1))

5) SSL = f (Q, Qt-1, T, Tt-1, H, Ht-1, Qout, Qout(t-1))

Model Performance 
indicators

Input combination

1 2 3 4 5

ANN MAE (tons/day) 112.31 131.22 33.11 19.52 18.21

RMSE (tons/day) 140.21 114.45 30.41 22.37 20.76

PCC 0.52 0.54 0.81 0.73 0.92

ANFIS MAE (tons/day) 232.51 167.25 58.21 34.85 22.41

RMSE (tons/day) 151.44 114.45 84.51 29.43 20.76

PCC 0.43 0.48 0.79 0.77 0.88

RBFNN MAE (tons/day) 245.62 131.22 73.11 57.21 28.75

RMSE (tons/day) 222.35 114.45 30.41 22.37 20.76

PCC 0.49 0.56 0.83 0.66 0.87

GP MAE (tons/day) 332.58 358.88 29.54 55.84 39.33

RMSE (tons/day) 261.54 297.78 30.41 48.44 49.21

PCC 0.31 0.29 0.84 0.66 0.84

SVM MAE (tons/day) 201.68 131.22 87.61 49.52 67.77

RMSE (tons/day) 197.85 114.45 30.41 22.37 80.26

PCC 0.41 0.56 0.83 0.95 0.82

DL MAE (tons/day) 487.78 368.76 119.54 187.43 151.29

RMSE (tons/day) 392.67 297.78 141.61 148.36 187.44

PCC 0.29 0.34 0.78 0.61 0.69

Input variables: Q, T, H, Qout

Target variable: SSL



7. Comprehensive Evaluation of Machine Learning Models for Suspended 
Sediment Load Inflow Prediction in Reservoir

Model Architecture:

ANN
The number of neurons in hidden layer of ANN determines its architecture. 

Increasing the number of hidden neurons does not always result in increasing performance of network. 

Usually a trail-and-error procedure is adopted for determination of number of hidden neurons. 

For this study, the number of neurons in hidden layer was varied from 2-12. 

Training ANFIS involves selecting number of membership function (MF), output MF type, optimization method, 

and number of epochs. 

Studies in literature debate on importance of MF type selection for attaining optimized ANFIS performance.

In this study, eight input MFs were utilized. The ‘constant’ output MF type was used, and ‘hybrid’ training FIS 

optimization method was employed.

For all eight input MF types, the number of epochs were increased persistently until the error became constant.

ANFIS
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MLP

MLP is a widely used deep learning technique which has been applied in this study for sediment deposition 

modelling. 

The suitable architecture of the model is adopted based on trial-and-error method. 

For this study, 8-layered fully connected network was adopted with one input and output layer, three hidden 

layers, and three dropout layers. 

Three hidden layers contained 100, 50, and 20 number of neurons, respectively. 

The rectified linear unit (ReLU) activation function was used which has increased application in recent years for 

deep neural nets due to its abilities to avoid saturation of gradient. 

Each of the three hidden layers were followed by one dropout layer having dropout rate 0.3, 0.2 and 0.1, 

respectively. 

The application of dropout layer assists in avoiding overfitting in deep net applications and the dropout rate 

defines the percentage of neurons inactivated in feed-forward pass.
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Results

ANN
The results for testing data are shown in Fig.7 with all three performance indicators. 

Best performance was seen with ten hidden neurons and after that the performance 

of network started decreasing. 

The transfer function for output layer is ‘purelin’ because the target data in its natural 

state was used. 

Hence, 4-10-1 network architecture was used for simulation, and three training 

functions were employed for comparison. 

 It was observed the Levenberg-Marquardt (LM) algorithm has minimum value of 

MSE for both training and testing data, as shown in Table 1. 

The WI values for all simulations fall near the ideal value of 0.5. 

The PCC values in the Scaled Conjugate Gradient (SCG) and Bayesian Regulation 

(BG) application were similar, but the WI indicator showed slightly better results for 

SCG. 

 It was concluded based on performance indicators that using LM algorithm yielded 

best possible result for sedimentation problem.

Figure ǀ ANN architecture selection based on performance indicators

Transfer Function

Training Data Testing Data

MSE WI PCC MSE WI PCC

Levenberg-Marquardt 2.945 0.541 0.973 3.221 0.511 0.959

Scaled Conjugate Gradient 3.232 0.498 0.971 4.729 0.464 0.955

Bayesian Regularization 3.252 0.495 0.971 4.994 0.469 0.947

Table 2 ǀ ANN results utilizing different transfer functions
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Results
ANFIS

The resulting performance indices values for each MF are 

shown in Fig. 8. 

The results revealed that ‘trainmf’ MF produced fixed course 

values; thus, it can be discarded for modelling this problem. 

The ‘gbellmf’, ‘dsigmf’ and ‘psigmf’ showed best 

performance based on MSE criteria. 

However, slightly better values for ‘psigmf’ MF were obtained 

for WI and PCC criteria. 

Hence, the ANFIS with ‘psigmf’ input MF type was declared 

best for modelling sediment deposition.

Figure 8 ǀ Effect of different ANFIS membership functions on model 

performance 
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Results
For the comparison of three models, the best performing architecture of each model 

and their performance indicators are shown in Table 3. 

 It was concluded that the ANN model with one hidden layer was most efficient in 

capturing the relationship of reservoir operation and climate change variables with 

sediment deposition rate. 

The MLP model consisted of multiple hidden layers yet performed poorly. 

Figure 4 consisted of annual sediment deposition in the reservoir observed during 

the testing period (2017-2019) and its simulation results using all three models. 

All the models tend to over-predict the amount of sediment deposition in 2017 and 

2018 while MLP showed over-prediction in 2019. 

The fact observed here that soft computing models tend to over-predict the 

sediment deposition is also reported by previous researchers (Emamgholizadeh & 

Demneh, 2018; Kumar et al., 2019; Malik et al., 2019). 

This is because generally the sedimentation data is highly variable, and it is likely 

that training and testing datasets have different distributions.

Figure 9 ǀ Performances of models for simulating sediment 

deposition in testing period



7. Comprehensive Evaluation of Machine Learning Models for Suspended 
Sediment Load Inflow Prediction in Reservoir

It is evident from Table 2 that application of all three models at the testing stage showed a decreasing trend in 

performance. 

These results also reflect the variable effects of changing climate on the sediment deposition because the reservoir 

water inflow and water temperature were different in training and testing periods. 

Whilst data applied for training has been observed to optimally train ANN with single hidden layer, the performance 

of ANFIS and MLP was inferior because of larger data requirement for training of their complex architectures. 

It is recommended to apply deep learning to solve this particular type of problem only when substantial data is 

available ; application of ANN with single hidden layer is recommended for smaller datasets. 

Model
Training Testing

MSE WI PCC MSE WI PCC

ANN (4-10-1) 2.945 0.541 0.973 3.221 0.511 0.959

ANFIS (MF: psigmf) 3.022 0.529 0.971 2.954 0.498 0.944

MLP (4-100-50-20-1) 4.521 0.475 0.955 4.822 0.418 0.916

Table 3 ǀ Comparison of best performing architectures of three models
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Results

ANN ANFIS

MLP



8. Conclusions

o This study was carried out to inspect the potential of ANN, ANFIS, and MLP in simulating sediment deposition at Sangju Weir,

South Korea.

o Input combination of reservoir water temperature, inflow, water stage, and outflow were used to develop soft computing models

while the reservoir sediment deposition rate was the target variable.

o The estimates of ANN, ANFIS and MLP were compared with observed sedimentation using MSE, WI, and PCC and performance

indicators.

o The results indicated that ANN, ANFIS, and MLP were able to predict reservoir sedimentation rate with reasonable degree of

accuracy. ANN model with 4-10-1 architecture and LM transfer function gave the best performances in training and testing

periods.

o Eight membership functions for ANFIS were employed and their performance hierarchy was psigmf > dsigmf > gbellmf > pimf >

gauss2mf > gaussmf> trapmf > trainmf.



8. Conclusions

o MLP model with three hidden layers and three dropout layers was the less efficient than ANN and ANFIS models.

o The outcomes of this study are useful to model increased reservoir sedimentation rates as the impact of climate change.

o ANN, ANFIS and MLP employed here are data-driven models, hence the outcomes of these methods need to be verified using more data.

o The scope of the present study can be broadened by applying a more diverse set of input variables.

o It is also recommended to expand the scope of this work in future research by coupling the parameter estimation methodology with quasi-

steady or unsteady flow simulation models.

o Scope of the ML modelling comparative study can be expanded with the application of more associated input variables for SSL inflow

prediction and comparison with physically-based modeling studies.

o The applicability of the SSL modelling approach can be extended by the integration of quasi-steady or unsteady water and sediment flow

simulation models.
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