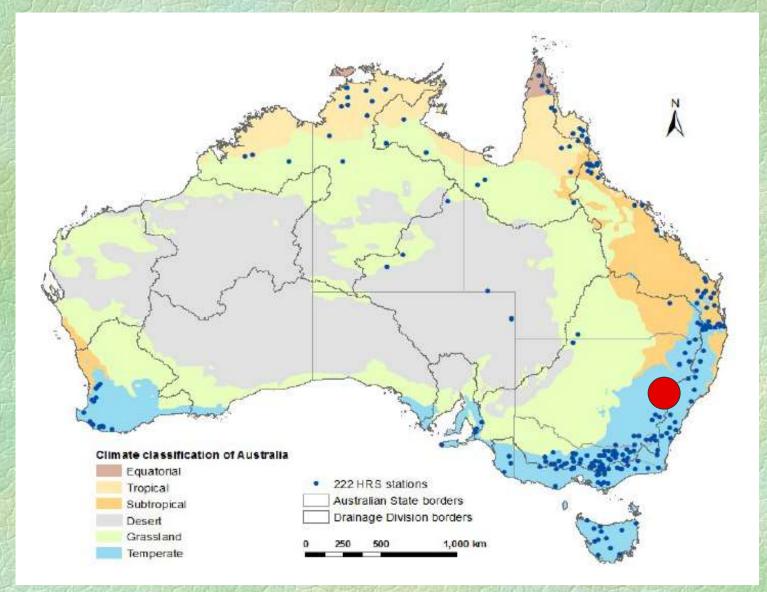

Assessment of climate change impacts on future streamflow in a catchment of the Australian Hydrologic Reference Stations (HRS)

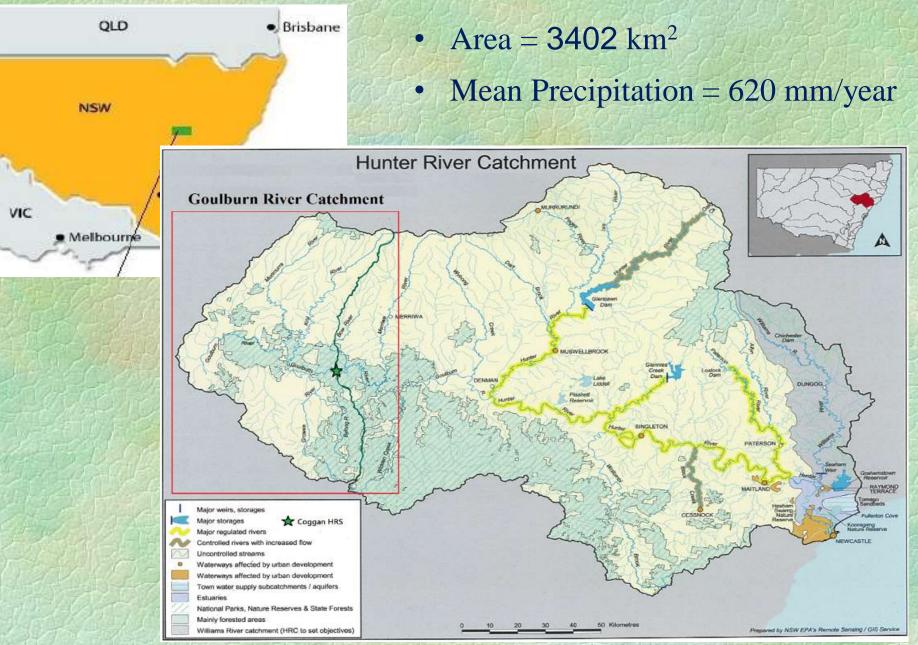
# Hashim Al-Safi, Ranjan Sarukkalige

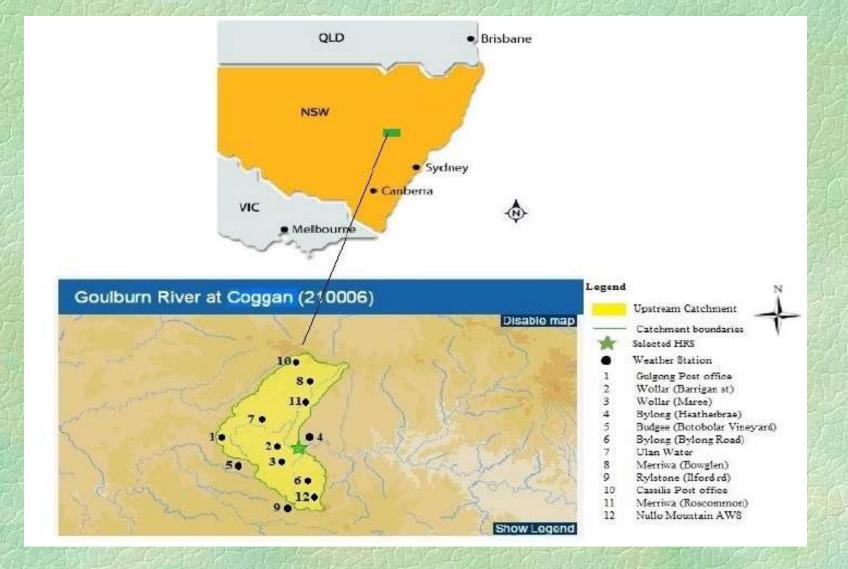


Senior Lecturer/ Team leader UHRG Department of Civil Engineering


- In Australia, the average temperature has increased and Rainfall has decreased over the last 50 years specially the south-eastern Australia.
- Climate change impacts on long-term water availability and food security and the environment.




#### **Australian Hydrological Reference Stations (HRS)**


- > The Australian Bureau of Meteorology (BoM) has created a network of 222 Hydrologic Reference Stations (HRS) across Australia, to explore the long-term streamflow trends in unregulated catchments
- > All sites of the HRS-network were carefully chosen and prioritized according to three specific criteria
  - \* The contributing catchments of the selected sites are unaffected by the land-use change and local water resources regulations.
  - They hold long-term, high-quality discharge records
  - The selected stations signify all hydro-climatic areas within Australia. 3

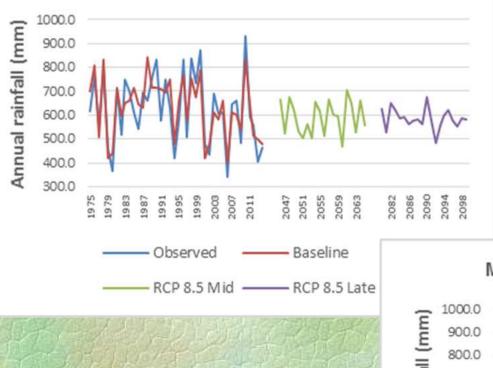
#### **Australian Hydrological Reference Stations (HRS)**



# **Study Area - Goulburn River catchment**






- 1- Rainfall (point data from 10 weather stations)
- 2- Temperature (point data from 3 weather stations)
- 3- Potential Evapotranspiration (point data from 3 weather stations)
- 4- Stream flow at the outlet point (gauged data at Coggan HRS)

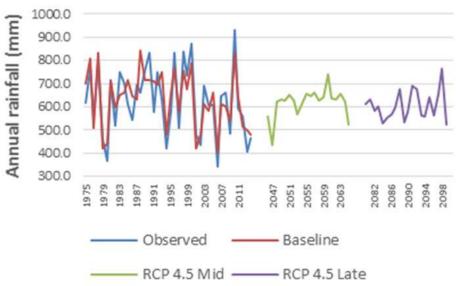
#### **Future Climate Data**

- Future climate series of rainfall and temperature
- Multi-model ensemble of 8-GCMs (CMIP5) Coupled Model Intercomparison Project phase 5
- Two RCPs (Representative Concentration Pathways) RCP4.5 and RCP8.5
- Two future periods mid (2046-2065) and late (2080-2099) of the 21<sup>st</sup> century
- Reference/control run period (1975-2014).

| CMIP5 model ID | Institute            | Atmosphere resolution (km) |
|----------------|----------------------|----------------------------|
| ACCESS1.0      | CSIRO-BOM, Australia | 210×130                    |
| CanESM2        | CCCMA, Canada        | 310×310                    |
| CNRM-CM5       | CNRM-CERFACS, France | 155×155                    |
| GFDL-ESM2M     | NOAA, GFDL, USA      | 275×220                    |
| CESM1-CAM5     | NSF-DOE-NCAR, USA    | 130×100                    |
| HadGEM2-CC     | MOHC, UK             | 210×130                    |
| MIROC5         | JAMSTEC, Japan       | 155×155                    |
| NorESM1-M      | NCC, Norway          | 275×210                    |
|                |                      |                            |


A Statistical Downscaling Model developed by BoM (BoM-SDM) (Timbal et al., 2008) was used to extract the local-scale daily rainfall and temperature (point climate projections) from the global-scale monthly outputs of the baseline and future periods.




Mean annual rainfall (10 stations)

Observed and CMIP5 (model) Mean Annual rainfall

-RCP4.5 and RCP8.5 climate scenarios.



#### Mean annual rainfall (10 stations)

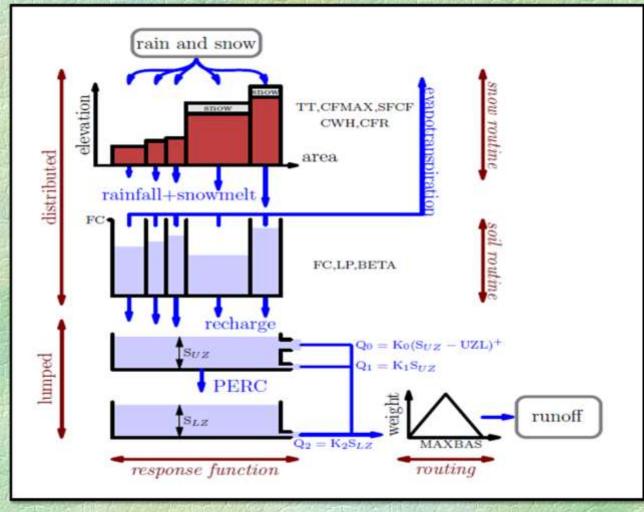


\* The future simulated rainfall is the ensemble mean of 8-GCMs.

#### **Future Climate Projection**

Overview of mean annual sums of Rainfall, Temperature and Potential Evapotranspiration For the observed, baseline and the future periods.

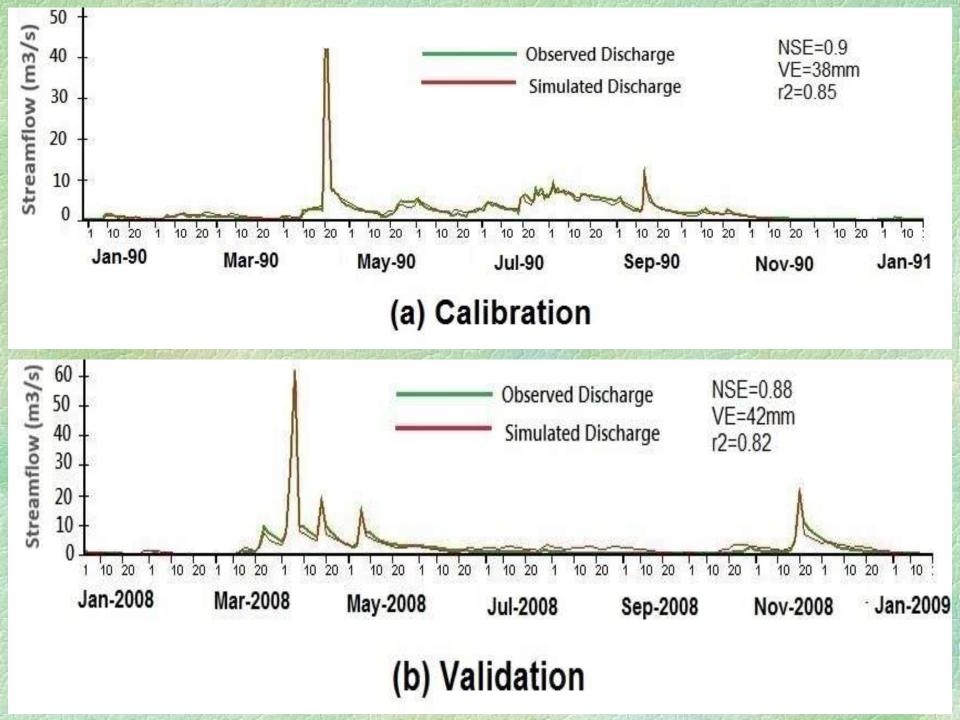
| Variable                                                                               | Observed Climate (1975-<br>2014) | (Baseline period) (1975-<br>2014) | 2046-2065 |        | 2080-2099 |        |
|----------------------------------------------------------------------------------------|----------------------------------|-----------------------------------|-----------|--------|-----------|--------|
|                                                                                        |                                  |                                   | RCP4.5    | RCP8.5 | RCP4.5    | RCP8.5 |
| P (mm/year)                                                                            | 625                              | 635                               | 610       | 590    | 605       | 585    |
| T (C°)                                                                                 | 16.1                             | 16.7                              | 17.1      | 17.5   | 17.3      | 17.9   |
| PE (mm/year)                                                                           | 1477                             | 1542                              | 1670      | 1690   | 1710      | 1750   |
| Changes in mean annual values compared to the baseline period (+)increase, (-)decrease |                                  | P% (mm/year)                      | -3.9      | -7.0   | -4.7      | -7.8   |
|                                                                                        |                                  | T (C°)                            | +0.4      | +0.8   | +0.6      | +1.2   |
|                                                                                        |                                  | PE% (mm/year)                     | +8.3      | +9.6   | +11.0     | +13.5  |

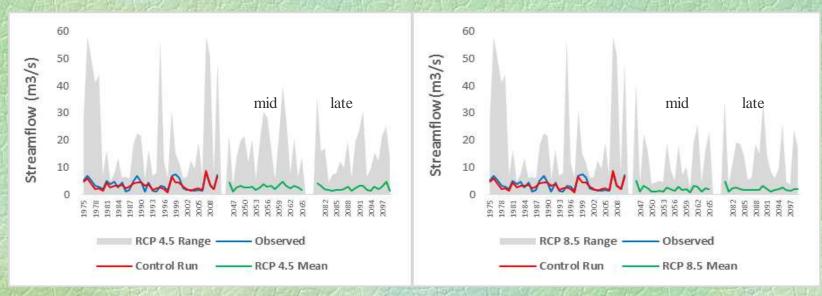

\* All RCPs values represent the ensemble mean of 8-GCMs

## **Hydrological Modelling**

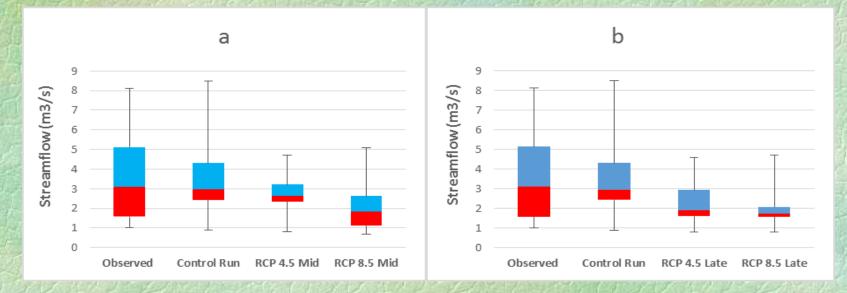
### The hydrological model - HBV model developed by SMHI

(Swedish Meteorological and Hydrological Institute)


A simple schematic structure of the HBV model




#### **HBV-Model Calibration & Validation**


- Daily observed streamflow data at Coggan HRS on Goulburn River was available for 33 years (1975-2014).
- Model was calibrated and validated manually against the daily observed streamflow data for the periods (1976-2004) and (2005-2014) respectively.
  - HBV model parameters and their optimal values resulting from the calibration process

| Parameter                                           | Symbol | Unit   | <b>Optimal value</b> |
|-----------------------------------------------------|--------|--------|----------------------|
| <b>Rainfall correction factor</b>                   | rfcf   | -      | 0.8                  |
| Maximum soil moisture storage                       | FC     | mm     | 250                  |
| Limit for potential evaporation                     | Lp     | -      | 0.8                  |
| Shape coefficient                                   | Beta   | -      | 3                    |
| General correction factor for potential evaporation | ecorr  | -      | 0.85                 |
| <b>Recession coefficient for upper response box</b> | Khq    | 1/day  | 0.9                  |
| <b>Recession coefficient for lower response box</b> | K4     | 1/day  | 0.07                 |
| Maximum percolation capacity                        | Perc   | mm/day | 0.9                  |
| Routing parameter                                   | Maxbaz | day    | 0.5                  |





Mean annual observed and simulated streamflow at Coggan-HRS. The average simulated runoff is the ensemble mean of 8-GCMs, while RCP4.5 and RCP8.5 range are the maximum and minimum of all GCMs.



The 25<sup>th</sup> and 75<sup>th</sup> streamflow percentile statistics under the RCP4.5 and RCP8.5 climate scenarios: (a) midcentury and (b) late-century.

#### **B-** Future River Discharge Simulation

Mean annual streamflow at Coggan-HRS for the observed, control-run and future periods (m3/s). The values of all RCPs represent the ensemble mean of 8-GCMs

| Variable                                                                                          | Observed<br>(1975-2014) | Control-run<br>(1975-2014) | 2046-2065 |        | 2080-2099 |        |
|---------------------------------------------------------------------------------------------------|-------------------------|----------------------------|-----------|--------|-----------|--------|
|                                                                                                   |                         |                            | RCP4.5    | RCP8.5 | RCP4.5    | RCP8.5 |
| Q Min.                                                                                            | 1                       | 0.9                        | 0.8       | 0.7    | 0.8       | 0.8    |
| Q25                                                                                               | 1.6                     | 2.4                        | 2.3       | 1.1    | 1.6       | 1.6    |
| Q75                                                                                               | 5.1                     | 4.3                        | 3.2       | 2.6    | 3.0       | 2.0    |
| Q Max.                                                                                            | 8.1                     | 8.5                        | 4.7       | 5.1    | 4.6       | 4.7    |
| Q Mean                                                                                            | 3.7                     | 3.3                        | 2.7       | 2.0    | 2.3       | 1.9    |
| Changes in mean annual runoff<br>compared to the control-run (%)<br>(+) increase, (-)<br>decrease |                         | Q Min.                     | -11       | -22    | -11       | -11    |
|                                                                                                   |                         | Q25                        | -4        | -54    | -33       | -33    |
|                                                                                                   |                         | Q75                        | -26       | -40    | -30       | -53    |
|                                                                                                   |                         | Q Max.                     | -45       | -40    | -49       | -45    |
|                                                                                                   |                         | Q Mean                     | -18       | -39    | -30       | -42    |

#### **Summary & Conclusions**

- The hydrological modelling results show decreasing tendencies in the future streamflow measured at Coggan-HRS under the RCP4.5 and RCP8.5 climate scenarios (compared to the reference/control run - 1975-2014).
- Findings of the this study well matches with similar outcomes of other previous studies which have been carried out in other Australian basins and revealed a noticeable decrease in the future rainfall & runoff.
- As the Goulburn-River flow is projected to decrease due to future climate change, this would effectively impose further limitations on the surface water supply systems in the Hunter-River basin.
- The findings may also be significant to manage the usage of future water resources in the catchment such as irrigation, water supply and even ecological/environmental use considering the low flows condition.

# THANK YOU..!!

Assessment of climate change impacts on future streamflow in a catchment of the Australian Hydrologic Reference Stations (HRS)

#### Hashim Alsafi, Ranjan Sarukkalige





#### **Acknowledgement:**

The financial support of the Higher Committee for Education Development in Iraq (HCED Iraq) Sponsorship