Evaluating Enzyme Performance in the Face of Process Complexity

Kris Still, Anca Pordea, Stephen Hall and Rachel L. Gomes

Bioprocess, Environmental & Chemical Technologies Research Group Department of Chemical and Environmental Engineering University of Nottingham

XVI World Water Congress – June 01st 2017, Cancun, Mexico

Complexity and Enzyme Variability

Aim: Understand how a complex process environment impacts on enzyme activity.

- Wastewater is a highly complex process environment.
- Enzymes are critical in wastewater treatment.
- Multiple factors impact enzyme performance.
- Enzyme variability = Inconsistent output.

Inherent Enzymes

Present in the wastewater system. (Biological Performance Indicator)

Exogenous Enzymes

Added to the wastewater system. (Bioactive Chemical Removal)

Enzyme Performance

Process Complexity

External Influences

Seasonal temperatures and rainfall
pH, COD, TSS, metals

Variability in Composition

- Municipal/ industrial waste streams
- Population behaviour (e.g. seasonal antibiotic spike)
 - Bioactive chemicals (natural/synthetic)

Operational Parameters

- Different process configurations
 - DO, MLSS, temperature

Wastewater Characterisation

- 1) Water quality parameters (e.g. TSS, COD and temperature).
- 2) High temporal and spatial variability.
- 3) Correlation with enzyme performance identifies key process and environmental factors that can affect output.

Sampling between Jan 2016 to Feb 2016 \rightarrow Stoke Bardolph (Nottingham) WWTP

Enzyme Performance

Inherent Enzymes

- Hydrolases break down the majority of organic pollutants (e.g. polysaccharides).
- Peptidases, lipases, esterases, glucosidases and phosphatases commonly analysed.
- Enzymatic profiles inform on biological performance.
- Research mainly on activated sludge from lab-scale units.

- Volatile suspended solids
 (VSS) linked to biomass
 concentration.
- Enzyme activity was expected to increase with VSS.
- Activity tended to decrease instead.

Old Ford Water Recycling Plant

- Direct non-potable water reuse
- 574,000 litres daily output capacity
- Membrane bioreactor (MBR) system
- Granular activated carbon (GAC) unit

Inherent Enzyme Analysis

Enzyme activity assayed through a fully operational WWTP

Sample Locations:

- 1) Raw Sewage
- 2) Screened Sewage
- 3) Mixed Liquor
- 4) Returned ActivatedSludge
- 5) Post MBR

Assayed Enzymes:

- α-Glucosidase (α-GLU)
- β-Glucosidase (β-GLU)
- Alkaline Phosphatase (ALP)
- Esterase (EST)
- Sulfatase (SUL)

Inherent Enzyme Correlations

- 7 sampling campaigns carried out in May 2016.
- Samples characterised by multiple water quality parameters.
- Pearson's (r) used to correlate the two variables.
- (+) \rightarrow both variables increase together
- (–) \rightarrow inverse relationship

	Raw Sewage								Raw Sewage								
		рН	°C	DO	COD	TSS	EC				α-GLl	U	β-GLU	А	LP	EST	
	α-GLU								α-GL	U							
	β-GLU								β-GL	U							
	ALP								ALP								
	EST								EST								
								_									
(-	+) Very Strong	(+) Stron	g N	(+) 1oderat	e V	(+) Veak	Corr	No Correlation		V	(-) Veak	(-) Moderate		St	(-) rong	(-) V Stro	ery ng

- DO = Dissolved Oxygen = COD = Chemical Oxygen Demand
- TSS = Total Suspended Solids EC = Electrical Conductivity

Enzyme Performance

Bioactive Chemical Removal

- WWTPs were not designed to tackle bioactive chemicals (BACs).
- BACs are a major concern for environmental authorities.
- The European Union has published a WatchList.

- Current enzyme technologies focus on oxidoreductases (e.g. laccase).
- Experimental conditions need to reflect the wastewater environment.
- Interactions between multiple BACs can influence enzymatic removal.

Bioactive Chemical Removal

Degradation Results

Laccase (1U/ml)							
Substrato	A dditiwo	Removal					
Substrate	Additive	(%)					
E1	-	100.0					
DCF	-	100.0					
SMX	-	3.2					
E1	DCF + SMX	97.0 ± 0.2					
DCF	E1 + SMX	100.0 ± 0.0					
SMX	E1 + DCF	12.8 ± 2.7					
SMX	E1	4.7					
SMX	DCF	5.7					

Tyrosinase (100U/ml)							
Substrate	Additive	Removal (%)					
E1	DCF + SMX	100.0					
DCF	E1 + SMX	0.0					
SMX	E1 + DCF	5.6					
SMX	E1	18.7					
SMX	DCF	0.0					

Experimental Conditions:

- Substrate \rightarrow 5µg/ml
- Matrix \rightarrow Deionised Water
- Contact Time \rightarrow 21 Hours at RT
- Estrone (E1), Diclofenac (DCF), Sulfamethoxazole (SMX)

Conclusions:

- Laccase and tyrosinase are two widely applied oxidoreductases.
- SMX removal by the two enzymes increased with the addition of both E1 and DCF.
- SMX removal by tyrosinase improved when E1 was the single additive.

Wastewater Matrix

Experimental Conditions:

■ Laccase \rightarrow 5U/ml ■ Tyrosinase \rightarrow 40U/ml Estrone (E1) \rightarrow 0.5µg/ml Matrix \rightarrow Effluent (Stoke Bardolph WWTP) Contact Time \rightarrow 1 Hour Temperature \rightarrow 20°C

Sample Number

Conclusions

- Inherent enzyme activities vary both spatially and temporally.
- Enzyme activity and water quality correlations reveal factors that strongly influence biological performance.
- Mixed substrate matrices can enhance overall BAC degradation.
- The variable results for E1 removal in wastewater shows the difference in behaviour for two similarly classed enzymes.

Future Work

- Metals and chemicals such as EDTA are present in wastewater.
- The above can inhibit or enhance enzyme activity not considered in synthetic matrices.
- Investigate enzyme response to these wastewater constituents.
- Study process factors at ranges reflecting operational WWTPs.

Acknowledgements

<u>Supervisors:</u> Dr Rachel L. Gomes Dr Anca Pordea Dr Stephen Hall <u>Research Group Support:</u> Dr Youla Jenidi Dr Shridharan Parthasarathy Andrea Garduno Jimenez

<u>Old Ford:</u> Dr Marie Raffin Dr Paul Rutter Waleed Rana Technical Staff

The authors acknowledge Severn Trent Water for access to treatment facilities and samples.

