

DEGRADATION OF PET NANOPLASTICS USING TiO₂/MIL-100(Fe) PHOTOCATALYST UNDER SOLAR IRRADIATION

ONLINE CONFERENCE 17-19 JANUARY 2023 ON THE IWRA ONLINE CONFERENCE SERIES

UNESCO-IWRA

"Priority" emerging pollutants in the hydrocycle: microplastics, nanomaterial, PFAs and PPCPs

Introduction

The occurrence of microplastics (MPs, <5 mm) and nanoplastics (NPs, <1 μ m) in the marine environment is raising strong concerns since they can have potentially negative effects on human health. Polyethylene terephthalate (PET) is a common polymer found in aquatic environments and the influents and effluents of wastewater treatment plants due to the growing global consumption and their resistance to degradation [1]. Heterogeneous photocatalysis (HP) is a useful treatment technology for removing nanoplastics (NPs) from water due to its high efficiency, low cost, and operation facility [2]. This study investigated the photocatalytic activity of TiO₂/MIL-100(Fe) of PET NPs degradation in an aqueous solution under solar radiation.

Experimental part

A) Catalyst synthesis

unesco

Table 1. Physicochemical properties of the materials.

Sample	BET surface area (m²/g) ^A	Crystallite size (nm) ^B	Eg (eV) ^c
MIL-100(Fe)	732.1	-	1.73
TiO ₂	128.2	4.0	3.03
TiO ₂ /MIL- 100(Fe) 12.5%	179.0	3.7	2.63

TiO_/MIL-100(Fe) 12.5%

Results and discussion

2 theta (degrees)

Fig. 1. XRD analysis of samples.

Fig. 2. SEM of PET (a) before and (b) after treatment using $TiO_2/MIL-100$ (Fe) 12.5% photocatalyst.

Fig. 3. FTIR of PET NPs before and after treatment (a), leachable TOC during PET NPs photocatalytic degradation (b), and gelpermeation chromatography results of PET NPs before and after treatment (c).

Conclusions

FTIR analysis and TOC measurements indicated that the TiO₂/MIL-100(Fe) photocatalyst presented an improved performance in degrading PET NPs than TiO₂. The degraded PET NPs exhibited morphological changes and reduced molecular weight, attributed to the main chain scission during the treatment using TiO₂@MIL-100(Fe) photocatalyst.

References

A.G. Rodríguez-Hernández, et al. Environ Sci Nano, 6 (2019) 2031-2036.
P.H. Allé, et al. Environ Chem Lett, 19 (2020) 1803-1808.

Acknowledges

The authors gratefully acknowledge Ciencia de Frontera 2019-CONACyT (1727980) and CONACyT-Mexico for the scholarship support (1080939).

Hinojosa-Reyes L.^{1*}, Rojas-Guerrero C. A.¹, Villanueva-Rodríguez M.¹, Guzmán-Mar J.L.¹, Maya-Treviño L.¹, Francisco E. Longoria Rodríguez²

¹Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, San Nicolás de los Garza, N. L. México; *laura.hinojosary@uanl.edu.mx.²Centro de Investigación en Materiales Avanzados S.C., Unidad Monterrey, Alianza Norte 202, Apodaca C.P. 66628, Nuevo León, México

^AN₂ physisorption. ^BXRD analysis. ^CUV-Vis DRS spectroscopy.

