Evaluation of DNA damage caused by anthropogenic pollutants in surface water in urban regions

INTRODUCTION

RESULTS

We detected caffeine at all sites and diethyltoluamide at sites 1 and 4 (qualitative data not shown). At all sites Escherichia coli and Total Coliforms were detected.

%

OBJECTIVES

Evaluate the presence of emerging pollutants in surface water samples under the influence of different anthropogenic effluents, was well the cytotoxic, genotoxic, and mutagenic potential of these samples in HepG2 cells.

METHODOLOGIES

Fig. 1: Map of collection sites.

rogramme hydrologigi ntergouvernemental

Table 3: Evaluation of the frequency of Binucleated cells (BN) with Micronuclei (MN), Nucleoplasmic Bridges (NPB), and Nuclear Buds (NBUD) in the CBMN assay in HepG2 cells exposed to surface water samples and negative and positive control. Results expressed as mean \pm standard error. ^aCulture medium. ^bmethyl methanesulphonate (MMS -100 μ M). *Significant difference in relation to the negative control at p <0.05; **p <0.01; ***p <0.001 (ANOVA, Dunnett's test).

Parameters	Negative	Negative COLLECTION SITES							
	Control ^a	Site 1	Site 2	Site 3	Site 4	Site 5	Positive Control [®]		
DNA damage (1,000 cells BN)									
MN	6.75 ± 1.11	11.50 ± 0.29*	14.75 ± 1.65**	13.75 ± 1.31**	9.25 ± 1.18	14.50 ± 1.32**	17.00 ± 1.00***		
NPB	0.00 ± 0.00	0.25 ± 0.25	0.00 ± 0.00	0.25 ± 0.25	0.25 ± 0.25	0.50 ± 0.29	0.33 ± 0.33		
NBUD	7.00 ± 0.58	11.75 ± 1.11*	16.25 ± 0.75***	19.50 ± 0.50***	17.50 ± 0.50***	17.00 ± 1.00***	17.00 ± 2.08***		

Renata F. Oliveira, Ana Letícia H. Garcia, Gabriele N. da Silva, Viviane C. Sebben, Guilherme M. S. de Souza, Johnny F. Dias, Dione Corrêa, Juliana da Silva

Emerging pollutants and managing wastewater and waste

Fig. 2. Evaluation of cell viability by the MTT Assay on HepG2 cells exposed for 3 hours to surface water samples, Negative Control (NC; culture medium), and Positive Control (PC; DMSO 20%). The bars represent the mean \pm standard error. *** Significant difference in relation to the negative control at p < 0.001 (ANOVA, Dunnett's test).

Table 1: Results of the physicochemical analysis of surface water samples. ^aAccording to CONAMA Resolution 357 - Class II. ^b<DL: below Detection Limit of 0.94 mg L⁻¹.^cBOD: Biochemical Oxygen Demand. ^dCOD: Chemical Oxygen Demand. ^eConsidering intermediate environment. ^f<DL: below Detection Limit of 0.10mg L⁻¹.

Daramotors	COLLECTION SITES					Person and Malues	
Parameters	Site 1	Site 2	Site 3	Site 4	Site 5		
рН	7.44	6.35	6.78	6.39	6.48	6.00- 9.00	
Conductivity (µs cm ⁻¹)	767	166.60	553	409	725	Not applicable	
Hardness (mg L ⁻¹)	25.66	15.40	20.53	19.01	35.93	Not applicable	
Chlorides (mg/L ⁻¹)	76.54	22.61	56.01	44.18	114.01	Max. 250.00	
Dissolved oxygen (mg L ⁻¹)	<dl<sup>b</dl<sup>	6.33	<dl<sup>b</dl<sup>	<dl<sup>b</dl<sup>	5.65	Not less than 5.0	
$BOD^{c} (mg O_2 L^{-1})$	101.90	9.80	60.70	55.70	11.80	Max. 5.00	
$COD^{d} (mg O_2 L^{-1})$	552	1.05	362	1.05	342	Not applicable	
Nitrates (mg L ⁻¹)	2.00	1.20	2.00	1.90	1.80	Max. 10.00	
Nitrites (mg L ⁻¹)	0.09	0.15	0.02	0.02	0.14	Max. 1.00	
Total ammoniacal nitrogen (mg L ⁻¹)	16.24	2.80	12.32	9.52	6.16	Max. 3.70	
Total Phosphorus (mg L ⁻¹)	0.80	0.30	0.03	0.06	0.12	Max. 0.05 ^e	
Oils and Greases (mg L ⁻¹)	88	460	34	98	14	Absent	
Total Dissolved Solids (mg L ⁻¹)	136	120	164	186	206	Max. 500	
Total Suspended Solids (mg L ⁻¹)	26	20	14	18	26	Not applicable	
Sulfates (mg L ⁻¹)	101.30	11.50	61.20	49.90	43.10	Max. 250.00	
Hydrogen Sulfide (mg L ⁻¹)	0.27	<dl<sup>f</dl<sup>	0.33	0.29	<dl<sup>f</dl<sup>	Max. 0.002	
Total Alkalinity (mg L ⁻¹)	103.88	29.40	74.48	54.88	58.80	Not applicable	
Turbidity (UNT)	61.60	9.49	31.30	31.30	8.39	Max. 100.00	
True Color (mg Pt L ⁻¹)	100	50	50	50	50	Max. 75	

Table 2: Results of the analysis of inorganic elements present in Sapucaia and Esteio streams (RS, Brazil). ^and: not detected.

Fig. 3. DNA damage using the alkaline Comet Assay was measured as DNA strand breaks (A) or oxidative damage (B; enzyme-modified Comet Assay; + FPG - sensitive sites) in HepG2 cells. Negative Control (NC, culture medium) and Positive Control (PC, 4NQO, 0.040 µM). The bars represent the averages ± standard error. *Significant difference in relation to the respective NC at P<0.05, **P<0.01 and ***P<0.001. ^aSignificant difference in relation to the Site 1 and 4 at P<0.05 (ANOVA, Tukey's test).

> Although the samples in the concentration used were not cytotoxic, water samples from all sites induced DNA damage in HepG2 cells. However, it is difficult to attribute these damages to a specific substance since the factors are a complex mixture of different compounds. Despite this, it is observed that both urban and industrial contributions had a similar effect in the cells evaluated. Thus, we emphasize the importance of conducting biomonitoring as well as the detection of different pollutants in aquatic environments.

Juliana Picinini, PhD student, Lutheran University of Brazil (ULBRA)

Inorganic	COLLECTION SITES							
Elements (ng/cm ²)	Site 1	Site 2	Site 3	Site 4	Site 5			
Magnesium (Mg)	nda	nd ^a	683.7	665.1	208.9			
Aluminum (Al)	5537	3045	18686	12996	3901			
Silicon (Si)	18387.4	7978.4	91420.4	55552.4	9838.4			
Phosphorus (P)	1163	260	1845	2167	1277			
Sulfur (S)	1027.3	nd ^a	1846.3	2036.3	273.8			
Chlorine (Cl)	nda	nd ^a	nd ^a	nd ^a	nda			
Potassium (K)	1320.7	334.2	7584.7	2514.7	429.3			
Calcium (Ca)	2264	nd ^a	5637	5320	2363			
Titanium (Ti)	1413.1	417.3	4015.1	3648.1	547.1			
Chrome (Cr)	10.5	3.8	34.2	57.3	18.3			
Manganese (Mn)	166.6	1157	554.9	725.5	3699			
Iron (Fe)	9534.7	5256.7	33452.7	24190.7	11722.7			
Nickel (Ni)	2.8	nd ^a	nda	nd ^a	1.9			
Copper (Cu)	35.8	nd ^a	109.6	156	nda			
Zinc (Zn)	122.3	32.4	265.5	413.1	108.6			
Strontium (Sr)	nd ^a	nd ^a	167.5	nd ^a	82.5			
Zirconium (Zr)	nda	nd ^a	367.7	136.9	nda			

CONCLUSIONS

