

Emerging Pollutants: Protecting Water Quality for the Health of People and the Environment

Multiple pollutants in rivers from wastewater: synergies and trade-offs in future pollution control

Dr Maryna Strokal

19 January 2023 9:40 CFT time

Key messages for the 21st century

- 1. Wastewater is expected to be a common source of multiple pollutants in rivers
- 2. More sewage connections may result in more pollutants in many rivers worldwide (trade-off)

3. **Better wastewater treatment** may **reduce pollutants** in many rivers worldwide (synergy), except for Africa

Multiple pollutants in rivers

Cocktails of emerging pollutants

Combined impacts on nature and society

Website:

https://www.wur.nl/en/Research-Results/Chair-groups/Environmental-Sciences/Water-Systems-and-Global-Change-Group/Research-1/Water-Quality/The-MARINA-models.htm

Wastewater is expected to be a common source of multiple pollutants

In the 21st century:

- > 2/3 of global population will be urban
- More sewage connections
- More pollutants entering sewage systems

Examples:

- OPathogens (feces and urine),
- Nutrients (feces and urine),
- Microplastics (e.g., car tyres, personal care products)
- Chemicals such as triclosan (antibacterial agent in soap)

O....

MARINA: Models to Assess River inputs of pollutants to seAs

Models: evaluated for multiple pollutants

Model inputs: e.g., population, wastewater treatment, sewage connections

Model outputs: e.g., pollutants in rivers by source and sub-basin

Model application: > 10,000 river sub-basins

MARINA: Models to Assess River inputs of pollutaNts to seAs

MARINA models are used to better understand

- Pollution hotspots and their sources
- Synergies and trade-offs in pollution control (scenario analyses)

Two scenarios

The basis: Shared Socioeconomic Pathways (SSPs)

	Economy first (based on SSP5)	Sustainability (based on SSP1)
Population growth	Low	Low
Urban population growth	High	High
Expansion of sewerage	High	High
Implementation of advanced wastewater treatment technologies	Slow	Fast

Five pollutants in rivers from sewage systems in the year 2010

Multi-pollutant hotspots:

- •North America, Europe and South Asia
- •20% of the global land area
- •> 2/3 of the global population

Future trends – "Economy first" scenario

Future trends – "Economy first" scenario

Changes in river pollution during 2010-2050

- <30% increase for all pollutants</p>
- >30% increase for one pollutant
- >30% increase for two pollutants
- >30% increase for three pollutants
- >30% increase for <u>four pollutants</u>
- >30% increase for <u>five pollutants</u>.

Sub-basins with multipollutant problems

Future trends – "Economy first" scenario

Changes in river pollution during 2010-2050

More sewage connections may result in more pollutants in many rivers worldwide (trade-off)

- <30% increase for all pollutants</p>
- >30% increase for one pollutant
- >30% increase for two pollutants
- >30% increase for three pollutants
- >30% increase for <u>four pollutants</u>
- >30% increase for <u>five pollutants</u>

Sub-basins with multipollutant problems

Future trends – "Sustainability" scenario

Changes in river pollution during 2010-2050

- <30% increase for all pollutants</p>
- >30% increase for one pollutant
- >30% increase for two pollutants
- >30% increase for three pollutants
- >30% increase for four pollutants
- >30% increase for <u>five pollutants</u>

Sub-basins with multipollutant problems

Future trends – "Sustainability" scenario

- <30% increase for all pollutants</p>
- >30% increase for one pollutant
- >30% increase for two pollutants
- >30% increase for three pollutants
- >30% increase for <u>four pollutants</u>
- >30% increase for <u>five pollutants</u>

Sub-basins with multipollutant problems Better wastewater treatment may reduce pollutants in many rivers worldwide (synergy), except for Africa

For Africa:

- It will be challenges to reach urban-associated pollution levels of 2010 in the future
- Rapid increase in population

Key messages for the 21st century

- 1. Wastewater is expected to be a common source of multiple pollutants in rivers
- 2. More sewage connections may result in more pollutants in many rivers worldwide (trade-off)

3. **Better wastewater treatment** may **reduce pollutants** in many rivers worldwide (synergy), except for Africa

Thank you for your attention!

The MARINA team

MARINA model website:

https://www.wur.nl/en/Research-Results/Chair-groups/Environmental-Sciences/Water-Systems-and-Global-Change-Group/Research-1/Water-Quality/The-MARINA-models.htm

Contact: maryna.strokal@wur.nl