

Emerging Pollutants: Protecting Water Quality for the Health of People and the Environment

Circular Economy Systems Engineering

Styliani Avraamidou

18th of January 2023

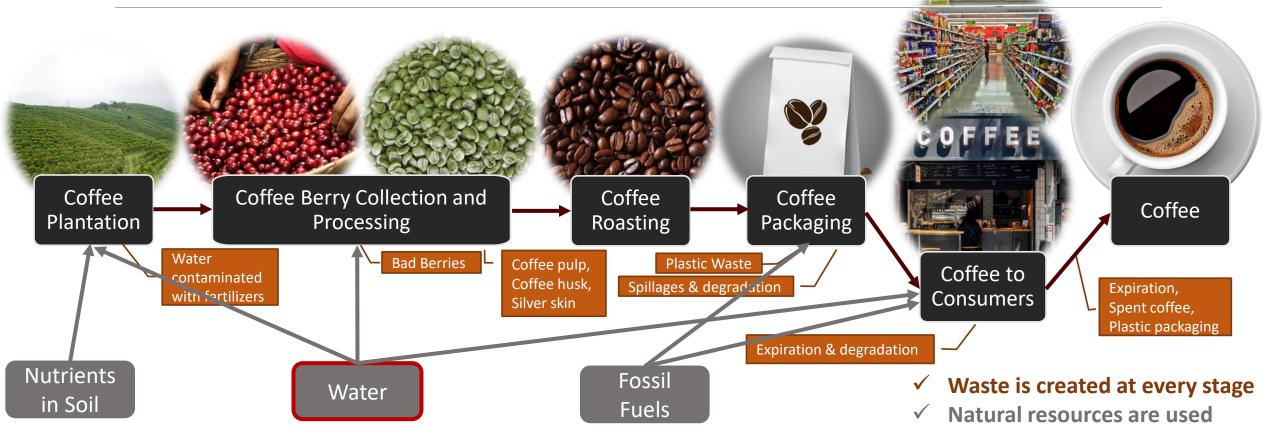
Overview

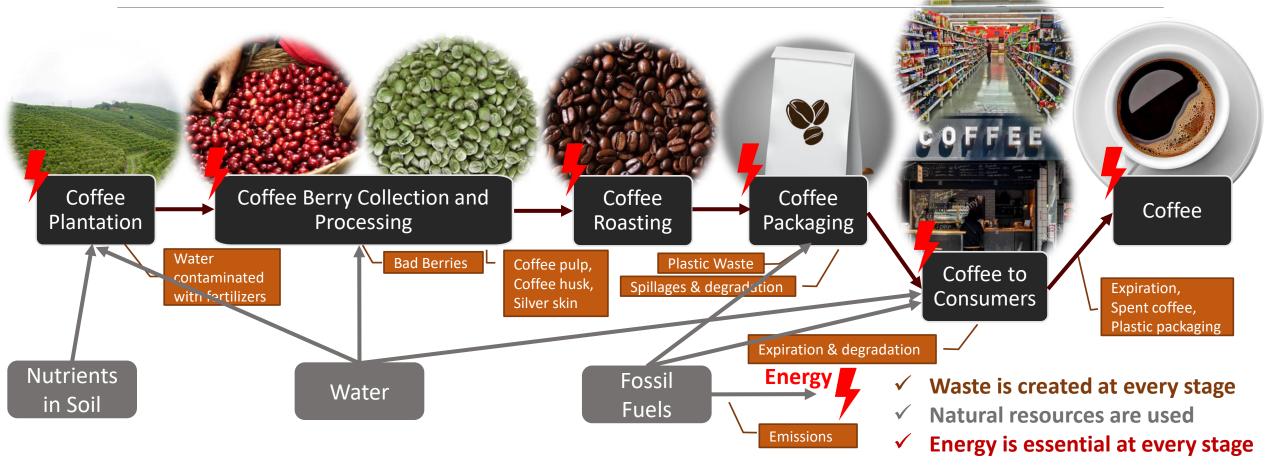
1. Circular Economy – Why? What? How?

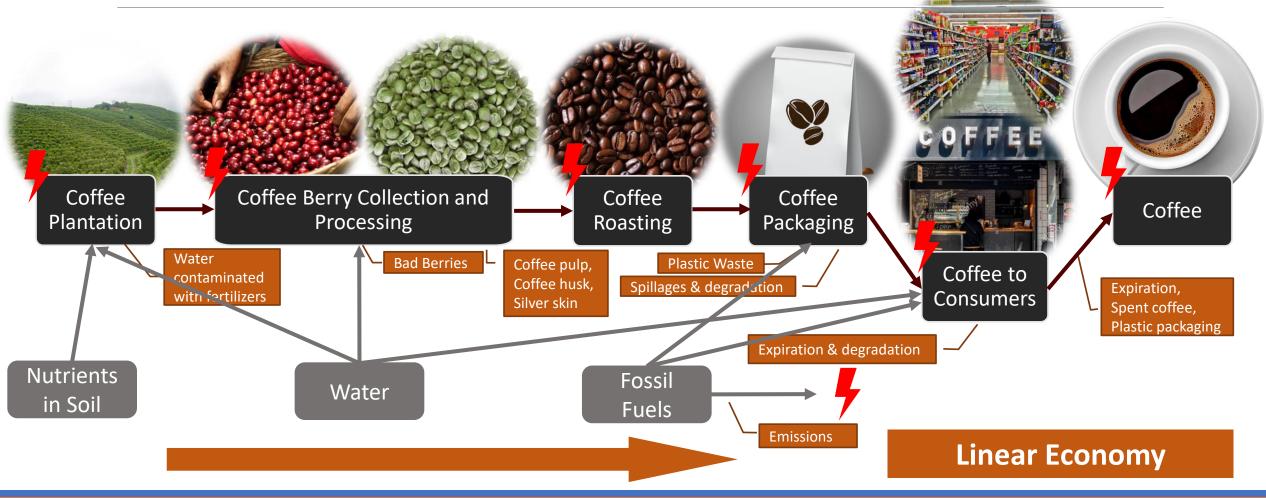
• Baratsas, S. G; Pistikopoulos, E. N; Avraamidou, S. A systems engineering framework for the optimization of food supply chains under circular economy considerations. Science of The Total Environment 2021, 794, 148726.

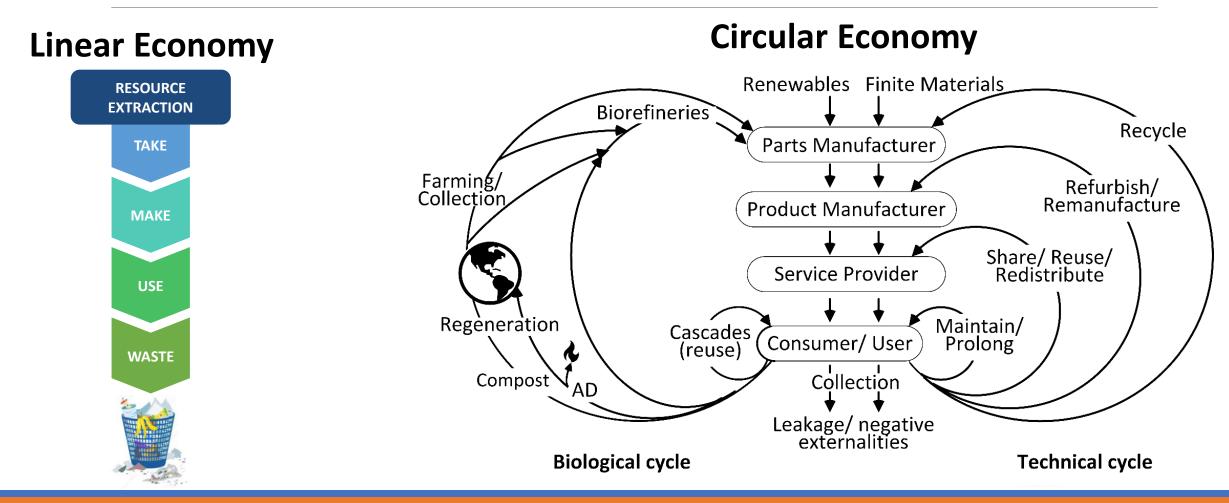
2. Coffee Supply chain

• Baratsas, S. G.; Pistikopoulos, E. N; Avraamidou, S. Circular Economy Systems Engineering: A case study on the Coffee Supply Chain. 31st European Symposium on Computer Aided Process Engineering (ESCAPE-31); 2021.


3. Circular Economy Systems Engineering Framework Avraamidou, S.; Baratsas, S.; Tian, Y.; Pistikopoulos, E.
 N. Circular Economy - a challenge and an opportunity for Process Systems Engineering. Computers & Chemical Engineering 2020, 133,106629.


1 cup of **Coffee** (10g dry) V





What is Circular Economy?

How is Circular Economy Defined?

Kirchherr, J.; Reike, D.; Hekkert, M.

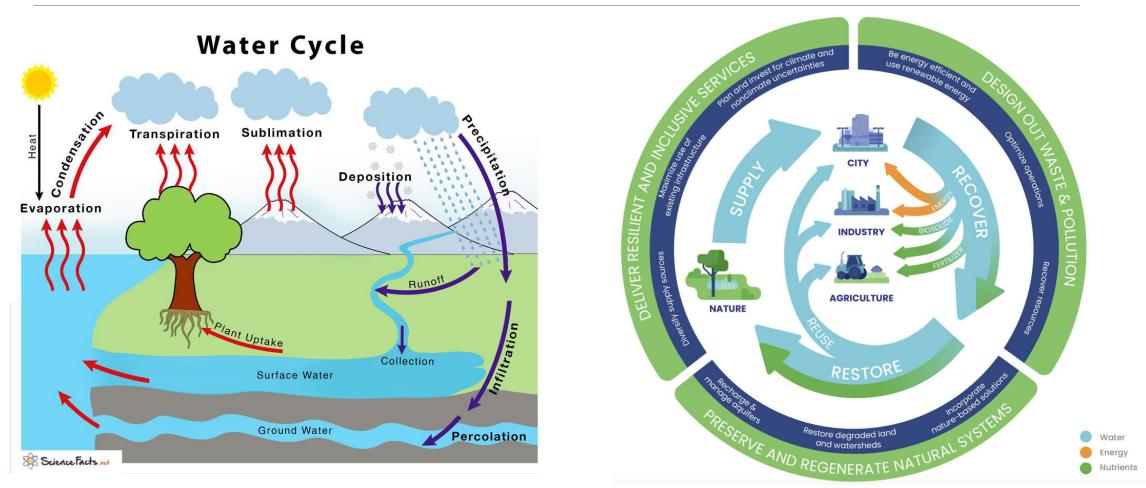
Conceptualizing the circular economy: An analysis of 114 definitions

Resources, Conservation & Recycling, 2017, 127, 221-232

- 1. Reduction of material losses/residuals
- 2. Reduction of input and use of natural resources
- 3. Increase in the share of renewable resources and energy
- 4. Reduction of emission levels
- 5. Increase the value durability of products

Circular economy throughout the world

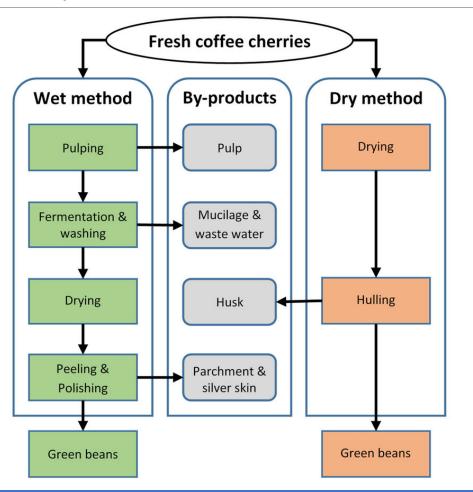
CE is currently promoted by several national governments and businesses around the world


Why Circular Economy?

- Rising populations put huge stresses on the natural resources
- Wastes have a negative impact on the environment
- > The current water crisis is one of the greatest challenges of our time
- Successful Circular Economy would contribute to all dimensions of sustainable development:
 - Economic
 - Environmental
 - Social

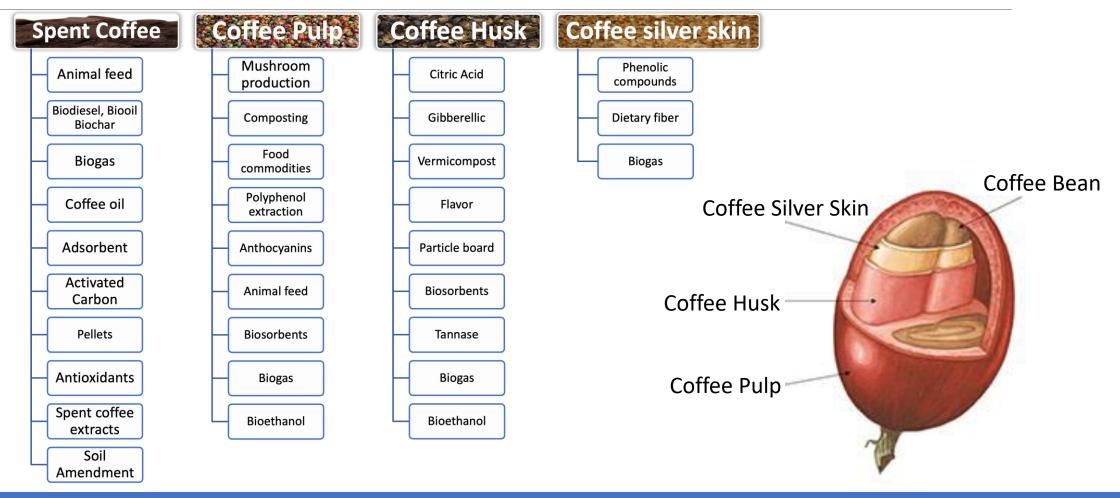
"Rethinking urban water through the circular economy and resilience lenses offers an opportunity to tackle all these challenges by providing a systemic and transformative approach to delivering water supply and sanitation services in a more sustainable, inclusive, efficient, and resilient way."

Water in Circular Economy and Resilience (WICER) Report – The World


Circular Economy Systems Engineering

Coffee Case Study

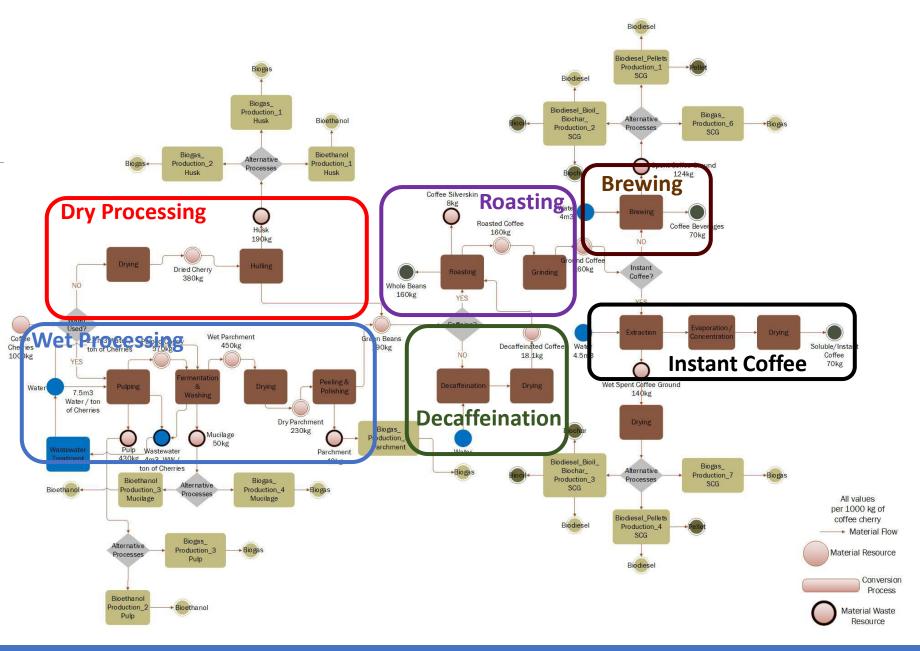
1. Production paths	 Identify and characterize alternative paths to produce the desired product
2. Waste utilization paths	 Identify and characterize alternative paths to utilize waste streams
3. Network representation	 Built a Resource-Task-Network (RTN) representation that includes all alternative paths
4. MILP Model	 Derive the Mixed Integer Linear Programing (MILP) model to represent the supply chain with the alternative paths
5. Optimization	 Solve the model through multi-objective optimization to consider all CE objectives


Towards a Circular Economy Systems Engineering Framework Coffee alternative production paths

Chala, Bilhat & Oechsner, Hans & Latif, Sajid & Müller, Joachim. (2018). Biogas Potential of Coffee Processing Waste in Ethiopia. Sustainability. 10. 2678. 10.3390/su10082678.

1. Production paths	 Identify and characterize alternative paths to produce the desired product 		
2. Waste utilization paths	 Identify and characterize alternative paths to utilize waste streams 		
3. Network representation	 Built a Resource-Task-Network (RTN) representation that includes all alternative paths 		
4. MILP Model	 Derive the Mixed Integer Linear Programing (MILP) model to represent the supply chain with the alternative paths 		
5. Optimization	 Solve the model through multi-objective optimization to consider all CE objectives 		

Towards a Circular Economy Systems Engineering Framework Alternative Products from Coffee Waste


Murthy S. P., Naidu M. M.; Sustainable management of coffee industry by-products and value addition – A review. *Resources, Conservation and Recycling* 66 (2012) 45-58

Valorization of coffee by-products for the production of bio-energy

Coffee	Bio-Energy Production						
By-Products & Wastes	Biodiesel	Bioethanol	Biogas	Bio-oil	Fatty Acid Methyl Ester (FAME)	Fuel Pellet	Hydrogen
Coffee Husk		Gouvea et al. (2009)	Blinová et al. (2017) Chala et al. (2018) Murthy and Naidu (2012b) Ulsido et al. (2016)			Blinová et al. (2017)	
Coffee Pulp		Blinová et al. (2017) Gurram et al. (2016)	Blinová et al. (2017) Chala et al. (2018) Figueroa et al. (2016)			Blinová et al. (2017)	
Coffee Mucilage		Orrego et al. (2018)	Chala et al. (2018)				Hernández et al. (2014)
Coffee Parchment			Chala et al. (2018)				
Coffee Silverskin		Blinová et al. (2017) Figueroa et al. (2016)					
Spent Coffee Grounds	Blinová et al. (2017) Campos-Vega et al. (2015) Banu et al. (2020) Karmee (2018) Murthy and Naidu (2012b) Kwon et al. (2013) Tongcumpou et al. (2019) Berhe et al. (2013) Haile (2014) Vardon et al. (2013) McNutt et al. (2019)	Blinová et al. (2017) Banu et al. (2020) Karmee (2018) Figueroa et al. (2016) Murthy and Naidu (2012b) Kwon et al. (2013) McNutt et al. (2019)	Banu et al. (2020) Karmee (2018) Figueroa et al. (2016) Li et al. (2014) Lee et al. (2019) Vítěz et al. (2016)	Banu et al. (2020) Karmee (2018) Figueroa et al. (2016) Li et al. (2014) Vardon et al. (2013)	Banu et al. (2020) Karmee (2018) Lee et al. (2019)	Blinová et al. (2017) Banu et al. (2020) Karmee (2018) Figueroa et al. (2016) Stylianou et al. (2018) Haile (2014)	Banu et al. (2020) Karmee (2018)

1. Production paths	 Identify and characterize alternative paths to produce the desired product 			
2. Waste utilization paths	 Identify and characterize alternative paths to utilize waste streams 			
3. Network representation	 Built a Resource-Task-Network (RTN) representation that includes all alternative paths 			
4. MILP Model	 Derive the Mixed Integer Linear Programing (MILP) model to represent the supply chain with the alternative paths 			

Superstructure Network of the coffee supply chain

1. Production paths	 Identify and characterize alternative paths to produce the desired product 			
2. Waste utilization paths	 Identify and characterize alternative paths to utilize waste streams 			
3. Network representation	 Built a Resource-Task-Network (RTN) representation that includes all alternative paths 			
4. MILP Model	 Derive the Mixed Integer Linear Programing (MILP) model to represent the supply chain with the alternative paths 			
5. Optimization	 Solve the model through multi-objective optimization to consider all CE objectives 			

Towards a Circular Economy Systems Engineering Framework MILP model for the coffee supply chain

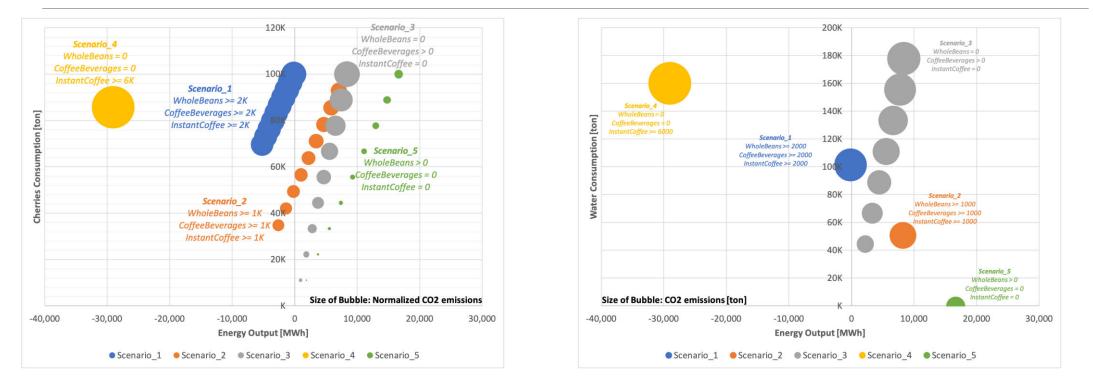
Binary Variables:

- Choice of process (e.g. wet or dry)
- Choice of waste utilization processes
- Continuous Variables
 - $\,\circ\,$ Amount of material going in and out of each process
- Constraints
 - Mass balances and conversion equations

• Big-M constraints

$$p_i + \sum_{j \in \mathcal{P}} pc_{i,j} \cdot x_j = s_i \; \forall \; i \in \mathcal{M}$$

$$x_j \leq M \cdot y_j \; \forall \; j \in \mathcal{P}$$


Objective Functions

- Maximize profit
- o Minimize waste
- Minimize natural resource use
- Minimize GHG emissions
- Maximize energy efficiency
- o Etc.

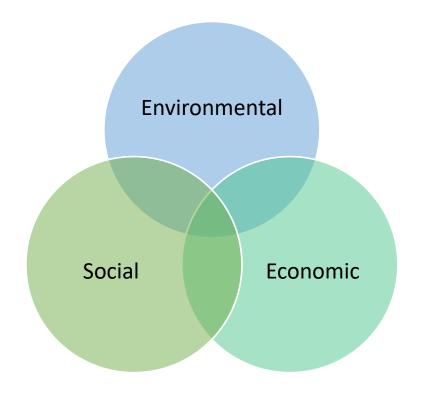
Coffee model statistics: 138 equations 58 continuous variables 18 binary variables

1. Production paths	 Identify and characterize alternative paths to produce the desired product
2. Waste utilization paths	 Identify and characterize alternative paths to utilize waste streams
3. Network representation	 Built a Resource-Task-Network (RTN) representation that includes all alternative paths
4. MILP Model	 Derive the Mixed Integer Linear Programing (MILP) model to represent the supply chain with the alternative paths
5. Optimization	 Solve the model through multi-objective optimization to consider all CE objectives

Towards a Circular Economy Systems Engineering Framework Pareto fronts – Analysis of different demand scenarios

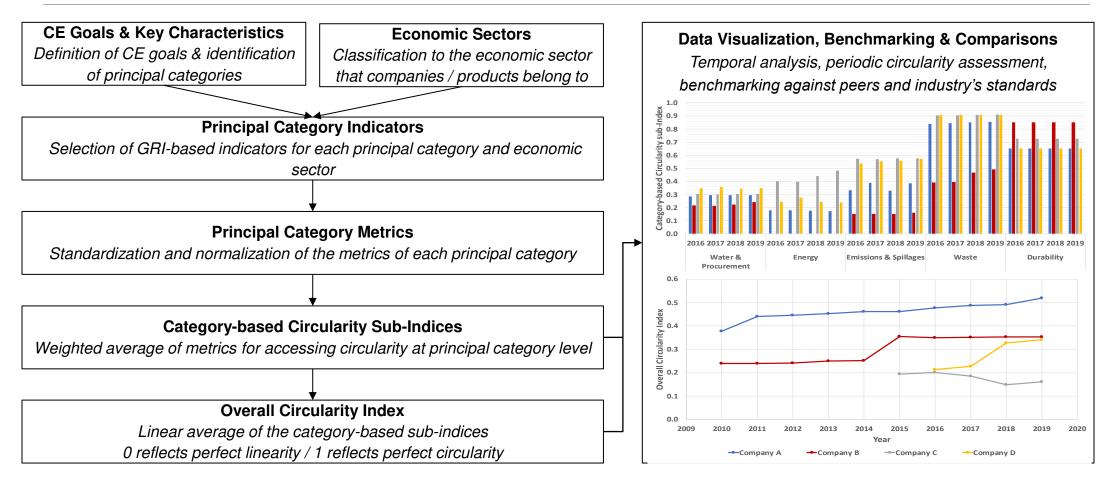
	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5
Whole Beans (ton)	≥ 2,000	≥ 1,000	= 0	= 0	> 0
Coffee Beverages (ton)	≥ 2,000	≥ 1,000	> 0	= 0	= 0
Instant Coffee (ton)	≥ 2,000	≥ 1,000	= 0	≥ 6,000	= 0

Baratsas, S. G; Pistikopoulos, E. N; Avraamidou, S. A systems engineering framework for the optimization of food supply chains under circular economy considerations. Science of The Total Environment 2021, 794, 148726.


Circular Economy Assessment Criteria

- How do we choose between the different optimal points in the Pareto fronts?

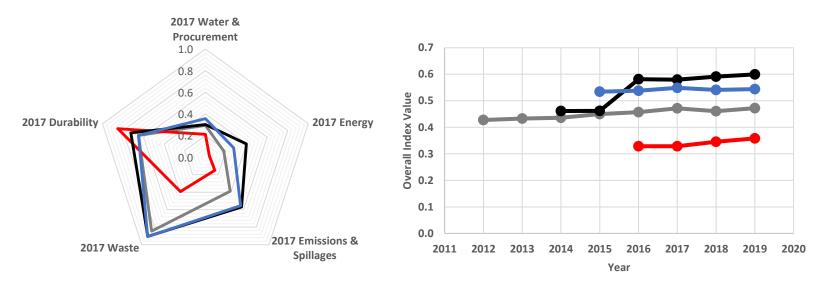
- Is Life Cycle Assessment possible/enough?


CE Goals & Key Characteristics

- 1 Reduction of material losses/residuals: Waste and pollutants minimization through the recovery and recycle of materials and products.
- 2 Reduction of input and use of natural resources: The reduction of the stresses posed on natural resources through the efficient use of natural resources.
- 3 Increase in the share of renewable resources and energy: Replacement of non-renewable resources with renewable ones, limiting the use of virgin materials.
- 4 Reduction of emission levels: The reduction in direct and indirect emissions / pollutants.
- 5 Increase the value durability of products: Extension of product lifetime through the redesign of products and high-quality recycling.



MICRON: CE Assessment Framework



Baratsas, S.; Pistikopoulos, E. N.; Avraamidou, S. A quantitative, holistic and robust circular economy assessment framework at the micro level. Computers & Chemical Engineering, 2022, 160, 107697

Towards a Circular Economy Calculator for Measuring the "Circularity" of Companies

Towards a Circular Economy Calculator for Measuring the "Circularity" of Companies

- ✓ Companies are able to track their transition towards CE
- ✓ Identify areas that need improvement
- ✓ Conduct temporal analysis
- ✓ Compare their performance against their peers

- Baratsas, Stefanos G., Efstratios N. Pistikopoulos, and Styliani Avraamidou. **A quantitative and holistic circular economy assessment framework at the micro level**. Computers & Chemical Engineering (2022), 107697.
- Baratsas, S. G., Masoud, N., Pappa, V. A., Pistikopoulos, E. N.,
 & Avraamidou, S. Towards a Circular Economy Calculator for
 Measuring the "Circularity" of Companies. In Computer
 Aided Chemical Engineering (2021), Vol. 50, pp. 1547-1552.
 Elsevier.
- Chialdikas, E.; Munguia-Lopez, A.C.; Aguirre-Villegas, H.; Avraamidou, S. A framework for the evaluation of the circularity of plastic waste management systems: A case study on mechanical recycling of HDPE. Foundations of Computer Aided Process Operations / Chemical Process Control; 2023.

A step towards predictive metrics to be used in supply chain optimization

- Presented a framework for the **modeling** and **optimization** of CE supply chains
- Introduces a tool for CE assessment
- Can aid in the **understanding**, analysis and **optimization** of more general Circular Economy Supply Chains

A Systems Engineering approach can have a big impact on:

- The understanding, analysis and optimization of Circular Economy Supply Chains, and
- The convergence of different disciplines towards a common vision of Circular Economy

Circular Economy Systems Engineering:

Offers a holistic integrated approach to assist quantitative decision making

Future Work:

- 1. Food-Energy-Water Nexus
- 2. Economics
- 3. Time dimension
- 4. Uncertainty/Resilience studies

Acknowledgements

Dr. Stefanos Baratsas

CCCVP Chemical Upcycling of Waste Plastics

CENTER FOR

COFFEE

RESEARCH & EDUCATION

Department of Chemical and Biological Engineering UNIVERSITY OF WISCONSIN-MADISON

CE supply chain of Beer

Ryan Peters

Ethan Saye

CE Calculator

Saanvi Malhotra

Elizabeth Chialdikas

Emerging Pollutants: Protecting Water Quality for the Health of People and the Environment

Circular Economy Systems Engineering

Styliani Avraamidou

18th of January 2023

