

Emerging Pollutants: Protecting Water Quality for the Health of People and the Environment

Monitored and Intentional Recharge (MIR).

A conceptual model to draft water quality regulations for Managed Aquifer recharge (MAR) and water reuse.

Intensive observation as a key to achieve water quality improvement.

Dr. Enrique Fernández Escalante, José David Henao Casas, Dr. Jon San Sebastián Sauto, and Rodrigo Calero Gil (Tragsa Group - IAH MAR Commission) MARSolu¹

Managed Aquifer Recharge ITN

INTRODUCTION

Monitored and Intentional Recharge (MIR) conceptual model:

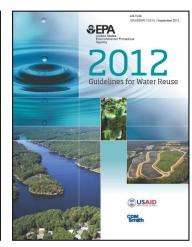
- MIR provides a basis to formulate MAR guidelines applied to specific environmental conditions that generally conform to each country's regulations.
- MIR proposes a set of blocks establishing a framework for MAR implementations with a high technical guarantee of success.
- Due to intense and planned monitoring, the MIR concept and its methodology are key for water quality and security.

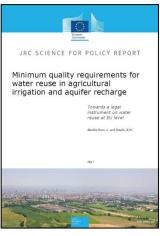
MIR is a conceptual model to draft MAR guiding documents

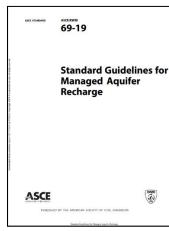
METHODOLOGY

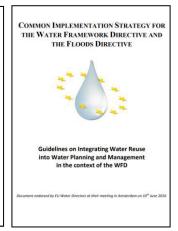
Review of 22 existing regulations and guidelines on water reuse and MAR:

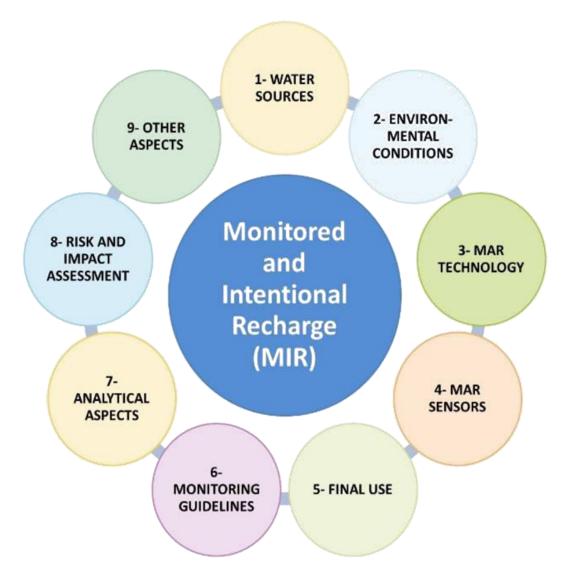
- European Union
- WHO
- USA
- Chile
- Australia


• •


Special attention to monitoring guidelines and risk/impact-based analyses.






METHODOLOGY (2)

- 1. Selection of most important aspects
- 2. Scoring based on the level of development in the document
- 3. Final score

Group	Aspect	Score
General context	Wastewater reuse, including water sources and final uses	28
Risk and impact assessment	Health protection	27
MAR planning	Review of policy and legal framework	
Operation aspects	Monitoring and pilot testing	24
Receiving medium	Groundwater source protection	22
Risk and impact assessment	Agriculture supply protection	22
Risk and impact assessment	Risk assessment	21
Risk and impact assessment	maximum allowable concentration (MACs) list	21
MAR planning	MAR system design and characteristics	20
General context	Definition of terms	19
Social aspects	Water management framework, including entities and their duties	19
Financial issues	Funding/financial issues/costs	18
Risk and impact assessment	Dependent ecosystems protection	18
Receiving medium	edium Recharged water—unsaturated zone interaction	

- 1. Water sources
- 2. (Hydro)geological and environmental conditions
- 3. MAR technology
- 4. Sensorics for MAR
- 5. Final use
- 6. Monitoring guidelines
- 7. Analytical aspects
- 8. Risk and impact assessment
- 9. Others

Components of the MIR conceptual model

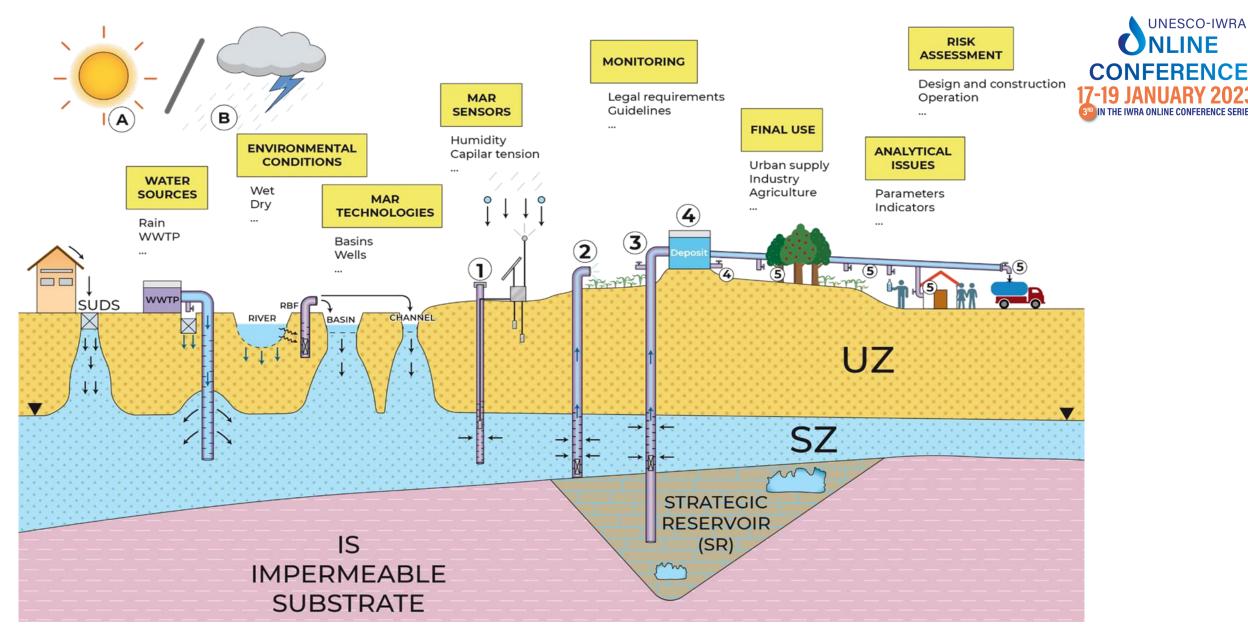
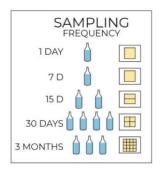


Figure summarising the Monitored & Intentional Recharge (MIR) conceptual model

2. (HYDRO)GEOLOGICAL AND ENVIRONMENTAL CONDITIONS


UZ River River KARST KARST

3. MAR TECHNOLOGY

UNESCO-IWRA NLINE CONFERENCE 17-19 JANUARY 2023 "IN THE IWRA ONLINE CONFERENCE SERIES

7. ANALYTICAL

- Maximum allowable concentrations (MACs)
- Proposal for monitoring parameters
- Sampling point & frequency

FOR MAR 5. FINAL USE

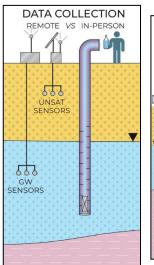
1. WATER SOURCES

Interdunar filtration

UZ

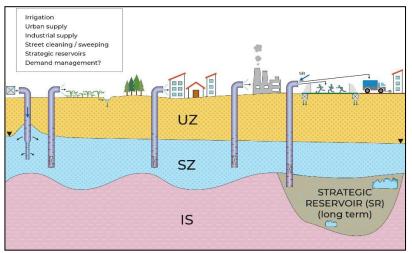
SZ

drainage SUDS

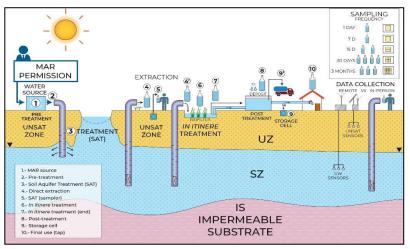

UZ

WWTP / Desalination plan

UZ


Irrigation returns

KARST



IMPERMEABLE SUBSTRATE

4. SENSORIC

6. MONITORING GUIDELINES

8. RISK ASSESSMENT

	Technical aspects	"Non-technical" aspects
Design and construction	- Legal constraints - Economic constraints - Lack of social acceptance - Weak water governance	- Availability of water source - Concessions or water rights constraints - Water scarcity - Hydrogeological assessment - Lack of infrastructure. - Dependence of valuable habitats
Operation (and manage- ment)	- Legal constraints - Economic constraints - Lack of social acceptance - Weak water governance	- Structural damage - Water shortage and volume constraints a the source - Drought - Clogging - Unacceptable water quality in a sensitive location - Specific objectives - Distortion of local ecological relations

9. OTHER ASPECTS (OPEN)

MIR components

WATER SOURCES:

- River
- Rainwater
- Urban runoff
- Wastewater
- Wetland
- Inter-dune
- Desalination plant
- Water supply excess
- Irrigation return
- Drainages

ENVIRONMENTAL CONDITIONS:

- · Dry site
- · Arid site
- · Wet site
- Unsaturated zone characteristics
- Saturated zone characteristics
- · Aquifer type (detrital, karstic, fractured)
- · Pollutant attenuation

MAR TECHNOLOGY:

- 1. Water spreading systems
- 2. Associated with rivers and canals
- 3. Targeted recharge: wellsboreholes percolationinjection
- 4. Filtration
- 5. Runoff (Sustainable urban drainage systems)
- 6. Accidental recharge (unmanaged)

MAR SENSORS:

- · On-site and remote
- · Unsaturated zone:
- -Volumetric water content
- -Capillary tension/water potential
- · Saturated zone:
- -Groundwater level
- -Temperature
- -Conductivity
- -Oxidation-reduction potential
- · Environmental conditions:
- -Stream flow rates
- -Infiltration rates
- Meteorological variables

FINAL USE:

- · Irrigation
- · Industrial water supply
- · Urban water supply
- · street cleaning & sweeping
- Strategic reservoirs (SR)
- · Groundwater storage augmentation
- · Hydraulic barriers
- · Environmental restoration

MONITORING GUIDELINES:

- Preliminary guidelines
- · MAR site permitting
- · Monitoring points:
 - 1- Water source
 - 2- Pre-treatment
 - 3- Vadose zone (recharge)
 - 4- Extraction
 - 5- vadose zone (extraction)
 - 6- In itinere treatment
 - 7- In itinere treatment (end)
 - 8- Post-treatment
 - 9- Storage cell
 - 10- Final use
- Sampling frequency
- · Data gathering

ANALYTICAL ISSUES:

- · Parameters to be analyzed
- -Unsaturated zone
- -Saturated zone
- -Unstable parameters
- -Stable parameters
- · Contaminants of emerging concern
- Maximum allowed concentrations (MACs):
- · For the water source
- · For the final use
- · Ideally at aquifer on site scale
- · Cost of the analyses

RISK OR IMPACT ASSESSMENT:

Design and construction

- 1. Non-technical constraints*
- -Legal and economic constraints
- -Lack of social acceptance.
- -Weak water governance
- 2. Technical constraints
- -Availability of water source
- -Water rights
- -Lack of infrastructure.

Operation

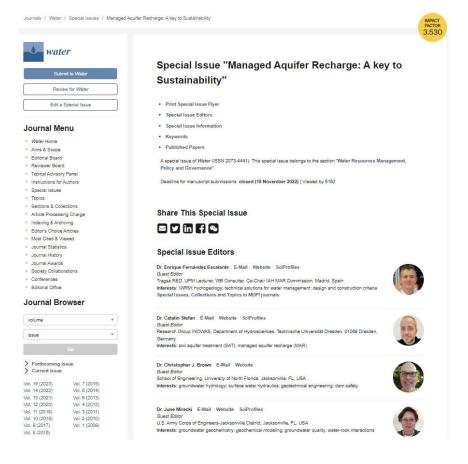
- 1. Technical constraints
- -Structural damage
- -Water shortage
- -Drought -Clogging
- -Unacceptable water quality

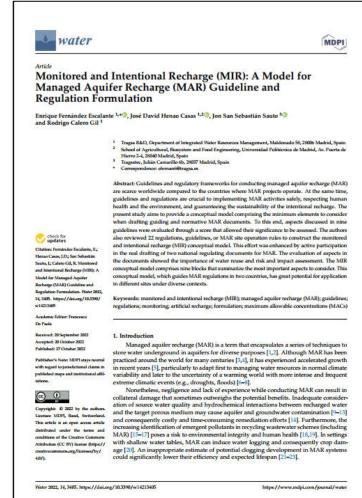
OTHERS:

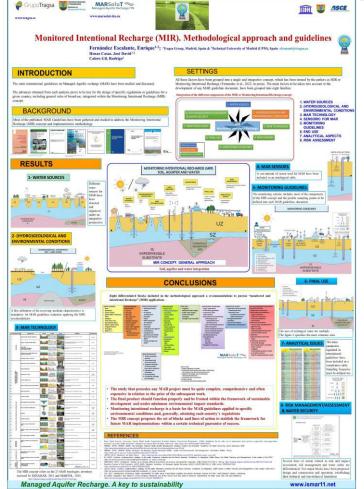
- · Technological solutions.
- Cleaning and maintenance criteria.
- Cost recovery
- Ontology
- Standardization
- Interoperability
- Water governance Additional technical
- recommendations Public participation
- Stakeholder engagement

MIR conceptual model: the 9 essential blocks

Key messages




M.I.R. can contribute to improve WATER SECURITY WORLDWIDE


- The MIR conceptual model proposes a complete list of elements to consider when drafting guidelines and regulations on MAR.
- It encourages a tailored approach based on the specific context of the country or region (open concept).
- MIR stresses the importance of alternative water sources and increasing awareness of water quality and human and ecosystem health protection
- MIR entails water quality and security improvements based on organized and planned monitoring activities.
- Peru's and Niger's water authorities are already considering the MIR conceptual model for MAR regulation. In the future, this model could be applied in Europe and beyond.

For more information...

Journal Water – Special issue from ISMAR 11

https://www.mdpi.com/journal/water/special issues/Aquifer Recharge

MIR at the Journal Water

https://www.mdpi.com/2073-4441/14/21/3405

MIR at ISMAR 11

https://dinamar.tragsa.es/file.axd?file=/PDFS/P-ISMAR-11.pdf