

Emerging Pollutants: Protecting Water Quality for the Health of People and the Environment

Development of a GIS-based Tool for Prioritisation of Potential PFAS Sites

Dr Jane Thrasher (Jacobs UK Ltd)

Co-authors: Russell Jordan, Francesca Giacomello, Yolande Macklin

Wednesday, January 18th, 2023; 11:35 CET

Challenging today. Reinventing tomorrow.

Background: Surveillance monitoring shows widespread PFAS occurrence

- Surveillance monitoring shows the **ubiquitous presence** of PFOS in surface water, often above EQS.
- PFAS also widespread in groundwater mainly at low levels; locally present in raw waters that drinking water supplies are taken from.
- Identified need for further research and investigative work to evaluate the **sources** contributing to widespread PFAS in the environment.
- A better understanding of the sources of PFAS and pathways to surface waters and groundwater will help ensure effective actions can be implemented.

Surface Water

The problem: How to prioritise the large number of potential PFAS source sites

- PFAS have applications in a wide variety of consumer products and industrial applications because of their unique chemical and physical properties
- They have been in use since the 1950s
- There are thousands of potential source sites where PFAS may have been lost to the environment
 - Where PFAS-containing Aqueous Fire Fighting Foam has been used in firefighting training, and fire protection and prevention
 - Industrial applications of PFAS e.g. mist suppression, specialist coatings
 - Disposal of materials containing PFAS waste water effluent, landfill, run-off
- How do you prioritise these sites for further assessment and effective regulation in a consistent and systematic manner, rather than simply focusing on the known and high-profile sites ?

From Environment Agency

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1012230/ Poly- and perfluoroalkyl substances -sources pathways and environmental data - report.pdf

Jacobs Challenging today. Reinventing tomorrow.

Approach : The PFAS Risk Prioritisation Project

- Objective: to develop a methodology to identify higher risk potential source sites and enable **prioritisation of effort** on the sites that can make the most difference
- A national GIS-based tool to map and prioritise sites, and then to build a robust evidence base to justify further risk management action
- Output the PFAS Risk Explorer which gives access to GIS web apps, analysis tools and reports
- Uses a Geographical Information Systems (GIS) approach utilising ESRI ArcGIS Professional with automated models
- Uses Multicriteria Analysis to rank source sites based on environmental setting from national datasets, water quality data and site types
- Presumptive source mapping helps rapid and systematic identification of potential exposure sources

GIS based Multicriteria Analysis

Presumptive Mapping of Potential Source Sites

- National scale mapping of selected potential PFAS source sites
- Data sources include:
 - Use of existing datasets
 - Web scouring to build datasets
 - Data held by regulators
 - Data purchased from suppliers e.g. Groundsure
- Mixture of co-ordinate points, addresses and polygons

Site Type	Number
'Air transport sites' – airports, airfields, current and former military sites	672
Current and former fire station sites and training grounds	2668
Landfills – 'historical', permitted and current	20900
Wastewater treatment sites	4565
Current and former 'Control of Major Accident Hazard Sites'	2286
*Selected current 'regulated industry sites'	755
*includes selected target industries such as textiles, metals, paper, chemicals, refineries requiring a Part A(1) Environmental Permit under EPR 2016	

Building the Environmental Setting Heatmaps

Combined Groundwater Environmental Setting Heatmap

Input

 National mapping representative of groundwater environmental setting

Process

• Combine using weighted scores

Output

• 'Heatmap' representative of overall groundwater environmental setting

Outcome

• Individual site scores weighted by environmental risk factors

Groundwater Vulnerability

The PFAS Risk Explorer

GIS Portal and Capabilities

Challenging today. Reinventing tomorrow.

Jacobs

Outcome

- We have mapped > 30,000 sites which are potential PFAS sources; this is presumptive mapping NOT known sources.
- More than half these sites have scores indicating high risk scores because they are situated in sensitive locations vulnerable to contamination due to proximity to surface water or groundwater.
- This model can't be used to identify if sites present unacceptable risks.
- But it can be used by regulators and stakeholders as the first step in identifying and prioritising sites for further desk based or site investigation.
- The study demonstrates the magnitude of the challenge facing regulators and stakeholders associated with identifying and managing PFAS sources
- Next steps include model enhancement and refinement:
 - Improved user interface to enable operational uptake
 - Further case studies and sensitivity testing
 - Refined source site differentiation

Acknowledgements

This work has been funded by the United Kingdom DEFRA / Environment Agency.

Environment Agency: Angela Haslam, Helen Pickering, Michael Hughes and many others Jacobs: Russell Jordan, Francesca Giacomello, Yolande Macklin and many others