

Emerging Pollutants: Protecting Water Quality for the Health of People and the Environment

Environmental exposure assessment of product-released engineered nanomaterials (PR-ENMs) from commercial products

Mbuyiselwa Moloi

18 January 2023

(10:00 CET)

Engineered nanomaterials use and release into the aquatic environment

Methods

Product selection	Characterisation (ENMs)	Environmental exposure	Characterisation (PR-ENMs)
 Medium to high environmental exposure potential products (Hansen <i>et al.</i> 2008) 			 Morphology
	Solvent extraction (sunscreens & creams)	Release	• Size
2 Sunscreens	Pretreatment (textile)		• Shape
1 Topical cream → Cream	Electron microscopy	Transformation & fate	 Elemental composition
2 Textiles	 Particle morphology 		• Hydrodynamic sizes
	 Elemental analysis 		• Particle size distribution
*ENMs indicated by manufacturer *Suspected to consist of	Surface area		 Zeta potential
ENMs/active ingredient at nano-	Pore volume		• Particle concentrations
level	Crystalline phases		• Elemental concentrations

Results (ENMs in NEPs)

500

Sunscreen: Titanium dioxide ENMs (Rutile) 18±1×75±4 nm ζ=-1.2 mV 83.103 m²/g

Topical cream: Zinc oxide ENMs (Zincite) 44±5 × 53±6 nm ζ=-15.5 mV

Results (PR-ENMs)

Results (PR-ENMs – Fate & Transformation)

PR-nTiO₂: Shaped & size maintained, settling in the sediment PR-nTiO₂: Higher Ti peak Maintains coating (Si) PR-nTiO₂: Negative ZP for released nTiO₂ Positive ZP from medium spiked with salt (10%)

Conclusions and policy implications

- Increasing discharge of PR-ENMs into the aquatic environment
- Need for method development for release and characterisation
- Investigation of factors influencing exposure dynamics which ultimately influence bioavailability,

effects and risk potential

- Robust data generation (exposure and risk) to conclusively advise on the need for policy

development for environmental safety

