

*Emerging Pollutants: Protecting Water Quality for the Health of People and the Environment* 

#### How to prioritize agrochemical pollutant evaluation in drinking water? RISK21 tools provide a framework for chemical risk assessment

#### Eliana Munarriz PhD, MBA

17<sup>th</sup> January 2023 / 16:55 CET







## Health and Environmental Sciences Institute (HESI)

#### **Developing science for a safer, more sustainable world.**

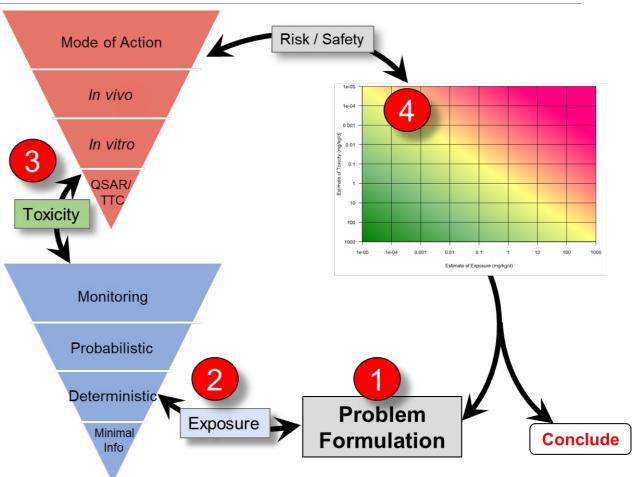
MISSION: Collaboratively identify and help to resolve global health and environmental challenges through the engagement of scientists from academia, government, industry, NGOs, and other strategic partners. This mission is addressed within multi-stakeholder, global committees via:

- Development of decision frameworks
- <sup>o</sup> Data sharing and collective analysis
- Novel experimental studies
- Peer-reviewed manuscripts
- Tool and assay development
- Scientific meetings and trainings



#### www.hesiglobal.org



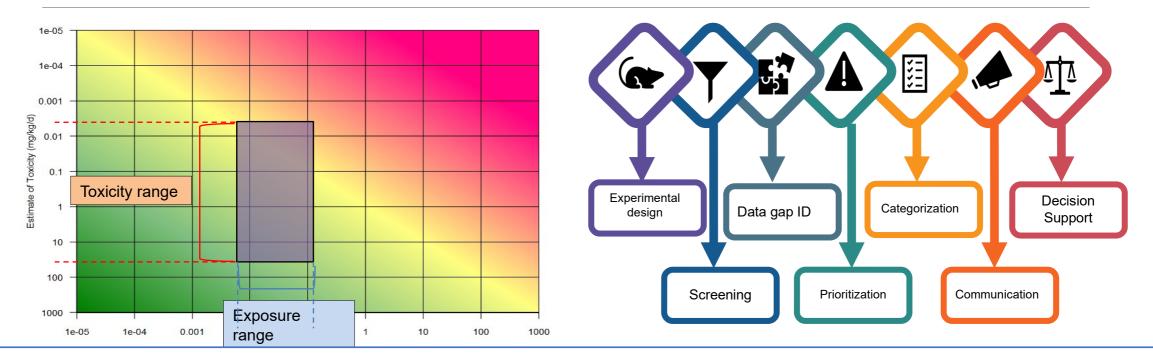

## **RISK21** and the Principles of Risk Assessment

#### Risk ≠ Hazard ≠ Exposure

#### Risk = f [Hazard x Exposure]

The probability of injury or illness resulting from the exposure to a potential hazard

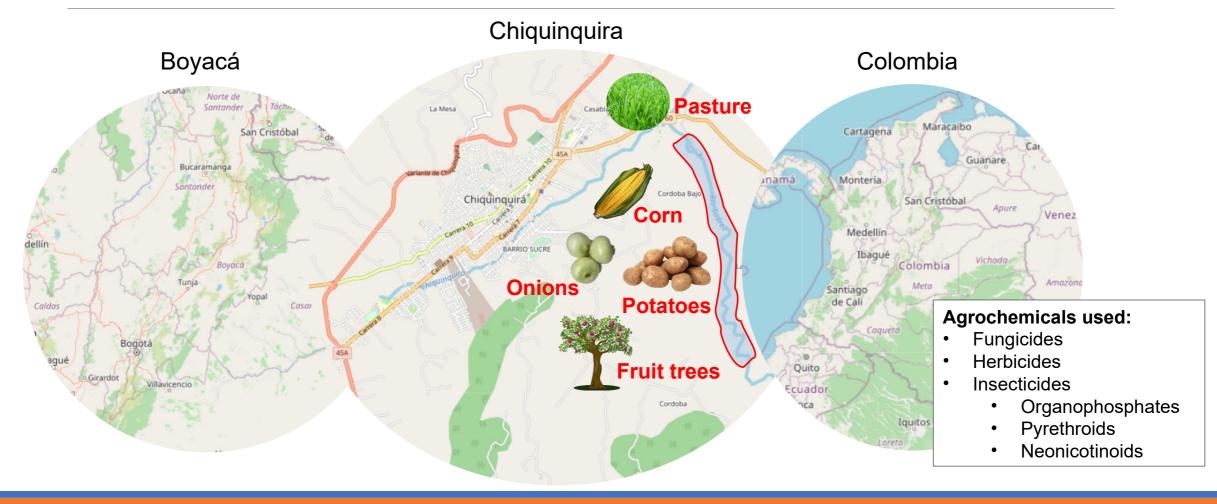
RISK21 developed a conceptual framework for effective use of all relevant information for interactive and transparent evaluation of the sufficiency of exposure and hazard information to inform a risk-based decision.




#### www.risk21.org



www.risk21.org


## **RISK21 Matrix and Applications**

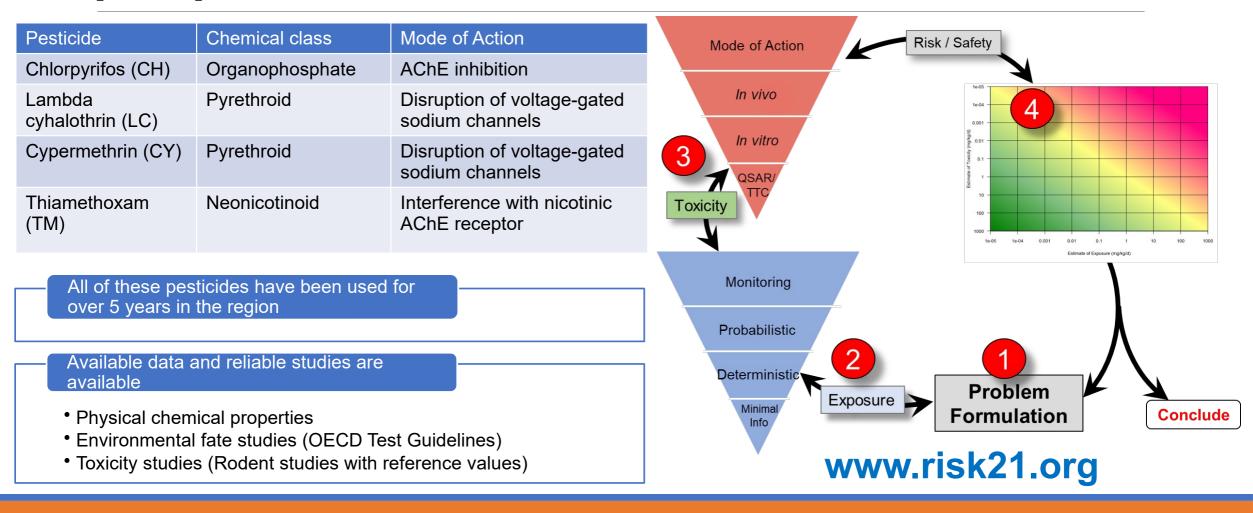


RISK21 approach takes advantage of existing information and aids in identifying when additional data are needed to make a decision.



## Pesticide Monitoring in Colombia: RISK21 Application Example



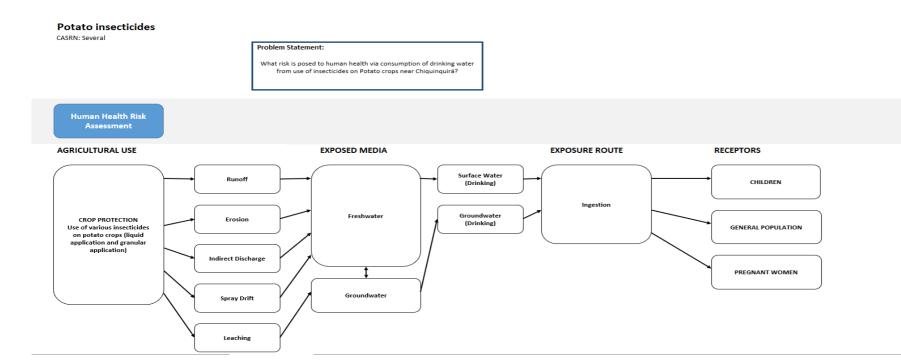



## **Objective and Scope of the Analysis**

Evaluate which of the 4 insecticides most commonly used on potato crops in the Chiquinquirá region should be prioritized for monitoring or further evaluation based on a potential risk to human health through exposure via drinking water consumption.



# Main Insecticides Used on Potato Crops in Chiquinquirá

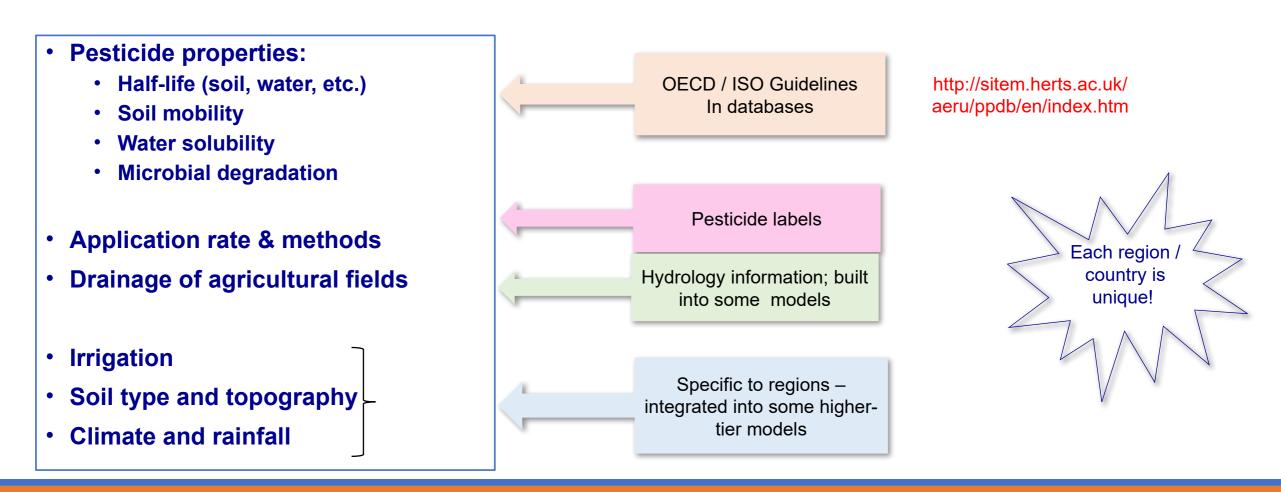







## **Problem Formulation**

#### HESI-RAFT: Risk Assessment problem Formulation Tool




Identify which of the insecticides used on potato crops near Chiquinquirá should be prioritized for additional evaluation (or potentially monitoring) based on potential human health concerns from exposure via drinking water.





### **Factors that Impact Pesticide Exposure**







## **Information to Estimate Exposure**

| Pesticide | Soil half-life<br>(days) | Water-sediment<br>dissipation rate (DT50)<br>(days) | Aqueous hydrolysis<br>(DT50) (days) | Aqueous photolysis<br>(DT50) (days) | Water solubility (mg/L) | Sorption<br>coefficient (soil<br>Koc; L/kg) |
|-----------|--------------------------|-----------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------|---------------------------------------------|
| СН        | 150                      | 36.5                                                | 53.5                                | 29.6                                | 1.05                    | 5509                                        |
| LC        | 175                      | 15.1                                                | Stable                              | 40                                  | 0.005                   | 283,707                                     |
| CY        | 22.1                     | 17                                                  | Stable                              | Stable                              | 0.009                   | 307,558                                     |
| ТМ        | 50                       | 40                                                  | Stable                              | 2.7                                 | 4100                    | 56.2                                        |

| Application | rate and | method | information |
|-------------|----------|--------|-------------|
|             |          |        |             |

Available on the pesticide label

Country, region, and crop-specific

Information available via usersurveys (e.g., farmers)

| Insecticida Agrícola Ingrediente activo:                                                                    |                                                                                                             |           |            |             |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------|------------|-------------|--|--|--|--|
| Pesticide CH: 480 g/L                                                                                       |                                                                                                             |           |            |             |  |  |  |  |
| Concentration of AI: 480 g/L<br>Application rate (high): 1.0 L/ha<br>CH Application = <mark>480 g/ha</mark> |                                                                                                             |           |            |             |  |  |  |  |
| CULTIVOS                                                                                                    | OBJETIVO BIOLÓGICO                                                                                          | DOSIS     | P.C.       | P.R.        |  |  |  |  |
|                                                                                                             | Minadar                                                                                                     |           |            |             |  |  |  |  |
| Café                                                                                                        | Minador<br>(Leucoptera coffeella)<br>Broca del café<br>(Hypothenemus hampei)                                | 1.0 L/ha  | 30<br>días |             |  |  |  |  |
| Café<br>Papa                                                                                                | (Leucoptera coffeella)<br>Broca del café                                                                    | 1.0 L/ha  | días<br>21 | 24          |  |  |  |  |
|                                                                                                             | (Leucoptera coffeella)<br>Broca del café<br>(Hypothenemus hampei)<br>Tostón                                 |           | días       | 24<br>horas |  |  |  |  |
| Papa                                                                                                        | (Leucoptera coffeella)<br>Broca del café<br>(Hypothenemus hampei)<br>Tostón<br>(Liriamyza sp.)<br>Cogollero | 0.5 - 1.0 | días<br>21 |             |  |  |  |  |

Example for CH; labels accessed for the other 3 pesticides as well





## **Andean-specific Exposure Tool Development**

- Based on USEPA's GENEEC2 screening model
- •VERY basic inputs (see table below)
- Provides conservative, screening-level surface water estimated environmental concentrations (EEC) in ug/L
- •Allows calculation of risk quotients with input of aquatic toxicity data



| Pesticide | Soil half-<br>life (days) | Water-<br>sediment<br>dissipation<br>rate (DT50)<br>(days) | Aqueous hydrolysis<br>(DT50) (days) | Aqueous<br>photolysis<br>(DT50) (days) | Water<br>solubility<br>(mg/L) | Sorption coefficient<br>(soil Koc; L/kg) | Application<br>(g ai / ha) | Application method /<br>type                | EEC<br>(ug/L) | Human<br>Exposure via<br>DW<br>(ug/kg/day) |
|-----------|---------------------------|------------------------------------------------------------|-------------------------------------|----------------------------------------|-------------------------------|------------------------------------------|----------------------------|---------------------------------------------|---------------|--------------------------------------------|
| СН        | 150                       | 36.5                                                       | 53.5                                | 29.6                                   | 1.05                          | 5509                                     | 480 (1 application)        | Tractor / High Boom;<br>Fine / Medium spray | 2.8           | 0.08                                       |
| LC        | 175                       | 15.1                                                       | Stable (110)                        | 40                                     | 0.005                         | 283,707                                  | 50 (1 application)         | Tractor / High Boom;<br>Fine / Medium spray | 0.006         | 1.7 x 10 <sup>-4</sup>                     |
| CY        | 22.1                      | 17                                                         | Stable (110)                        | Stable (110)                           | 0.009                         | 307,558                                  | 50 (1 application)         | Tractor / High Boom;<br>Fine / Medium spray | 0.005         | 1.4 x 10 <sup>-4</sup>                     |
| ТМ        | 50                        | 40                                                         | Stable (110)                        | 2.7                                    | 4100                          | 56.2                                     | 21.25 (1<br>application)   | Granular                                    | 1.0           | 0.03                                       |





## **Toxicity Data**

| Pesticide | Chronic POD<br>(NOAEL) | Study     | Endpoint(s)                                           | UF       | cRfD          |
|-----------|------------------------|-----------|-------------------------------------------------------|----------|---------------|
| СН        | 0.03 mg/kg/day         | Multiple  | AChE inhibition<br>(plasma & RBC)                     | 1000x UF | 3e-5 mg/kg/d  |
| LC        | 0.1 mg/kg/day          | Dog       | Neurotox                                              | 100x UF  | 0.001 mg/kg/d |
| CY        | 6 mg/kg/day            | Dog       | Neurotox                                              | 100x UF  | 0.06 mg/kg/d  |
| ТМ        | 1.2 mg/kg/day          | Rat 2-gen | Testicular tubular<br>atrophy; sperm<br>abnormalities | 100x UF  | 0.012 mg/kg/d |





## **RISK21** Pesticide Monitoring Prioritization

Add scenario / chemical

solid

thin . .

filled 🗘

above-left

÷

Chemical Name:

Display Options

Color:

Line Type

Line Width

Text Location

Point estimate

(optional)

Uncertainty

Percentage

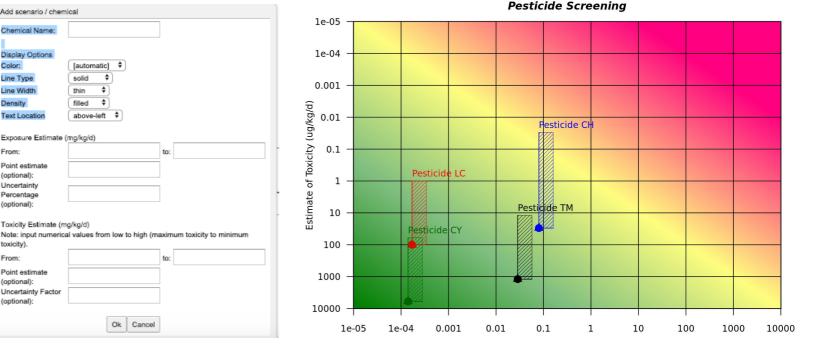
(optional):

toxicity). From

Point estimate

(optional): Uncertainty Factor

(optional):

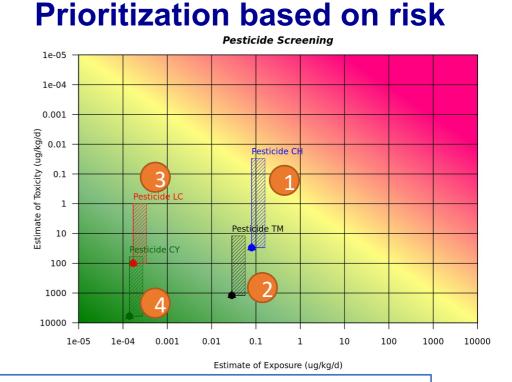

Exposure Estimate (mg/kg/d)

Toxicity Estimate (mg/kg/d)

Density

From:

- **Exposure:** using the EEC ٠ and considering that a person drink 2L/day (from the same source!) and body weight of 70 kg. The calculated ug/kg/d value w/ 100% uncertainty applied
- **Toxicity:** Plotted rodent ٠ **NOAEL** values + UFs applied to calculate cRfDs

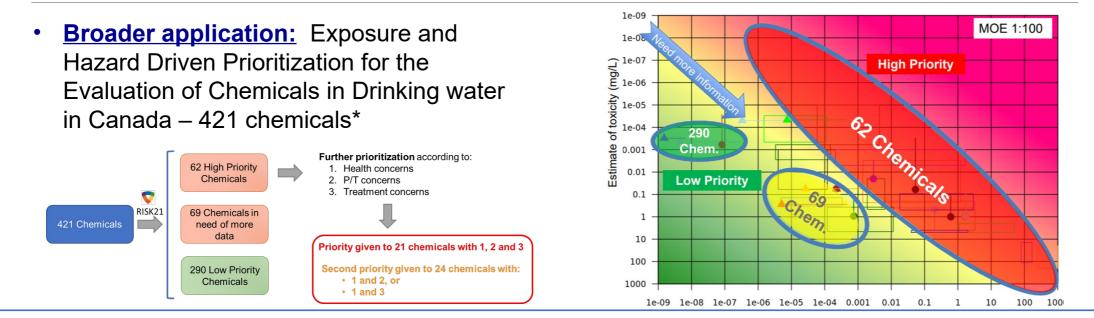



Estimate of Exposure (ug/kg/d)

#### CONFERENCE CONFERENCE CONFERENCE CONFERENCE CONFERENCE CONFERENCE Prioritization based on Hazard and Risk

#### **Prioritization based on hazard**

| Pesticide | Chronic POD (NOAEL) | Study     | Endpoint(s)                                           | UF          | cRfD             |
|-----------|---------------------|-----------|-------------------------------------------------------|-------------|------------------|
| СН        | 0.03 mg/kg/day      | Multiple  | AChE inhibition<br>(plasma & RBC)                     | 1000x<br>UF | 3e-5<br>mg/kg/d  |
| LC        | 0.1 mg/kg/day       | Dog       | Neurotox                                              | 100x UF     | 0.001<br>mg/kg/d |
| CY        | 6 mg/kg/day         | Dog       | Neurotox                                              | 100x UF     | 0.06<br>mg/kg/d  |
| ТМ        | 1.2 mg/kg/day       | Rat 2-gen | Testicular tubular<br>atrophy; sperm<br>abnormalities | 100x UF     | 0.012<br>mg/kg/d |




NESCO-IWBA

RISK 21 is an accessible, free and user friendly tool for Chemical Risk Management



## Conclusion: RISK21 is an accessible and easy to use approach for Risk Assessment



- RISK21 brings authorities a coherent, science-based decision-making tool, easy-to-handle and communicate chemical pollutant risk.
- Contribute with Governance processes for priority-setting and analysis of potential future scenarios of chemical exposure and environmental and human health analysis.

\*Presented at the HESI RISK21 Summit (Feb. 2020) by T. Barton-Maclaren, Health Canada. Presentation available at: https://risk21.org/wp-content/uploads/2020/03/BartonMaclaren-RISK21-Summit-2020-3.pdf



## **Acknowledgements**









Liliana Rojas Lady J. Dominguez Michelle Embry Sandrine Deglin Syril Pettit

#### Ariana Rossen

Applied Nematology Lab Agriculture and Bioscience Institute - CONICET School of Agriculture University of Buenos Aires Argentina

#### **RISK21 Training and Information**

emunarriz@agro.uba.ar membry@hessiglobal.org