

Field Label-Free Water Inspection using Interferometric Phase Microscopy

Natan T. Shaked

Department of Biomedical Engineering Tel Aviv University

Real-time (>video rate) interferometry of blood flowing rapidly in a micro-channel

Potential: Integration into cell sorters and water inspection devices

Throughput: >10,000 fps

Optics Letters **39** (2014) *Optics Express* **23** (2015)

Interferometric Phase Microscopy (IPM)

- IPM, also called **digital holographic microscopy (DHM)**, is able to **image transparent and semi-transparent samples** and **track sub-nanometric optical thickness** changes **quantitatively** with:
 - Thousands of frames per second in wide field (no scanning).
 - Non-contact manner.
 - Label-free (no sample preparation is needed),
 - or labeled-based, using plasmonic nanoparticles.
 - Minimal level of noise.
 - Ambient conditions (good for live samples).
- These techniques provide a **unique and powerful tool** for:
 - Biological research and medical diagnosis.
 - Material science characterizing micro- and nano-structures.

Quantitative Imaging

- Wide-field IPM can capture the entire wave front (amplitude + phase) → Possible to reshape the captured complex wavefront and:
 Compensate for optical aberrations.
 - •Semi-axial scanning by digital propagation (no mechanical movement).
- Excellent contrast between the entire cell and its surrounding.

• Sub-nanometer OPD quantitative measurement tracked overtime.

Shaked et al., Optics Letters 34, 767, 2009 Shaked et al., Optics Express 17, 15585, 2009

Water Inspection Uses for IPM

- Detecting micro-organisms (>1-300 μm) in water
- Detecting plastic particles (>1-300 μm) in water

 Detecting small metal nanoparticles (<100 nm) in water via the photothermal effect

Flipping Interferometry (FI) Module

- M₂ ← → Retro-reflector (RR)
 Flips one FOV°
 FOV and off-axis angle uncoupled°
- Allows dense samples in half of the
- optical FOVIn microscopy, the optical FOV is
- much larger than the digital (camera)

Roitshtain, Turko, Javidi, and Shaked *Optics Letters* **41**, 2354 (2016)

Microcopy of Diatom Shells

Conventional shearing interferometry

Flipping interferometry (FI)

Microfluidics Channel FI

Microfluidic channels can easily satisfies the condition of half empty optical FOV

Roitshtain, Turko, Javidi, and Shaked Optics Letters **41**, 2354 (2016)

Detection of gold and silver nanoparticles via their plasmonic peaks

 The plasmonic peak is specific to the nanoparticle size, shape, and type

Photothermal (PT) Effect

- Small metal particles have a large optical absorption.
- This strong absorption gives rise to a photothermal effect, i.e., an increase in temperature around the particle when it is illuminated by laser light.

Light-nanosphere interaction: Electron cloud oscillation

Example: Temperature rise of ~15 K for 5nm NPs (with heating intensity of ~20 MW/cm²).
 Temperature declines as the distance from the particle increases (~ 3 K at a distance of 13 nm from the center of the particle).

of 60nm gold nanosphere

Signal Processing

- AuNP Excitation:
 - 30 Hz
 - λ=532 nm
- Wide-field phase acquisition, rate > 60 fps

Single Isolated AuNP Imaging:

IPM Imaging ($5 \times 5 \ \mu m^2$ area) of Solution of 70-nm AuNPs in Water

PT phase signal rises linearly with an increase in the excitation beam power.
This gives us an indication that we measure a PT signal originated from the AuNPs.

Natan T. Shaked. Lab Homepage: www.eng.tau.ac.il/~omni

IPM Imaging of Groups of Isolated 40-nm AuNPs

- Above *N*=16 (ED TH), PT phase signal rises linearly with an increase in *N*.
- Again, This gives us an indication that we measure a PT signal originated from the AuNPs.

Natan T. Shaked. Lab Homepage: www.eng.tau.ac.il/~omni

Gold nanorods in water

(a) Spatially averaged PT phase signal as a function of the excitation power

(**b**) Spatially averaged PT phase signal as a function of the excitation laser frequency

(c) Spatially averaged PT phase signal as a function of the nanoparticle concentration in logarithmic scale

Blum and Shaked Nature LSA **4**, e322 (2015)

Conclusions

- **IPM** can capture the quantitative thickness of via refractive index imaging in water in 10,000 fps.
- We proposed a simple portable IPM modules that connect to existing imaging systems
- Can detect via quantitative phase imaging:
 - Micro-organisms (diatom typing, etc.)
 - Plastic particles
 - Plasmonic nanoparticles (gold, silver, etc.)

Biomedical OMNI Group

Biomedical Optical Microscopy, Nanoscopy and Interferometry Research Group

Prof. Natan T. Shaked

Postdocs:

- Dr. Garry Berkovic, BA Physics
- Dr. Itay Barnea, PhD Biology
- Dr. Mattan Levy, PhD Biology
- Dr. Rongli Gao, PhD Physics Graduate Students:
- Gili Dardikman, MSc BME
- Nir Turko, MSc EE
- Simcha Mirsky, MSc BME
- Lidor Karako, BSc BME
- Shira Zapesotsky, BA Physics
- Yuval Atziz, BSc BME
- Almog Taieb, BSc BME
- Maysam Nasser, MSc Mech
- Moran Robin, BSc EE
- Noga Nissim, BSc BME
- Shir Cohen, BSc BME Administration:
- Ofira Dabach, Lab Engineer

www.eng.tau.ac.il/~omni

