

INTERNATIONAL WATER RESOURCES ASSOCIATION'S 1st ISLANDS WATER CONGRESS FAROE ISLANDS - SEPTEMBER 4-6, 2024

International Water Resources Association

Water Management in the Azores Islands

Francisco Cota Rodrigues* José Carlos Goulart Fontes*

CIBIO – Research Center in Biodiversity and Genetic Resources Angra do Heroísmo - Azores

- Hydrologic context the Terceira island case study
- Strengths
- Challenges

The Azores archipelago

Corvo 9 Flores					1. 194	4	4				Water resources								
	191 879	Azores Archipelago		W-			Island	Area (km²)	Population (2021)	Groundwat (m³/y)	er* Surface water* (m ³ /y)	Abstracted water** (m ³ /y)							
					s			St ^a Maria	97,4	5 578	25 200 00	0 35 000 000	2 080 000						
								S. Miguel	759,0	137 699	370 000 0	0 511 000 000	25 923 000						
	94			\delta Graciosa			44	392	Terceira	402,2	55 873	193 000 0	205 000 000	10 600 000					
				-					Graciosa	60,7	4 301	15 000 00	0 134 000 000	1 140 000					
									S. Jorge	237,6	9171	219 000 0	0 252000000	1 830 000					
		Faial S. Jorge					Pico	447,0	14 114	582 000 0	0 277000000	1 910 000							
			Pico											Faial	172,4	14 356	74 100 00	0 112 000 000	2 500 000
C.MC.2	1.0		200	t.,					80	Flores	141,7	3 793	101 000 0	00 194 000 000	1 470 000				
100		Faial						_	Corvo	17,2	374	8300000	13 000 000	70000					
	2.00	A.	The P			S. Miguel			Azores	2 346,0	236 413	1 587 600 0	00 1 733 000 000	47 523 000					
North A	America		Europe						* Cruz (2004))									
in the		Azores	10 m					** AHA-DR	** AHA-DRA	(2015)									
~	6		-					372	Water at	ostracted	d (m ³ /	(v) %							
M.		Afric	a 0 25 50 100 km			St ² Maria			Groundw	vater	46 730	000 98,	3%						
								Superfici	al water	793 (000 1,7	%							

Azores islands hydrogeological model

Basal spring (Bravio)

erched spring (Cabrito)

Pershed aquifers

- Occur at all altitudes
- Abstracted from springs and wells
- Low storage capacity;
- High variability in flow rates;
- High vulnerability to pollution

Basal aquifer

- Occur near sea level
- Abstracted from wells
- High storage capacity
- Low variability in flow rates
- Sea water intrusion problems

Perched aquifers

There are 31 known perched aquifers on Terceira Island. The most productive are located inside calderas (Cinco Picos and Guilherme Moniz).

Basal aquifer

Corresponds to the saturated zone of the island body. It consists of a mass of fresh water that floats on seawater due to the differences in density.

Cinco Picos caldera and Lajes Graben perched aquifers

Adapted from Rodrigues (2002).

Terceira island groundwater sources

Perched aquifers- relationship between flows and precipitation

Electrical conductivity in basal and perched waters

Basal water with strong salinization processes (wells FVB, FTC and FAR).

INTERNATIONAL WATER RESOURCES ASSOCIATION'S

FAROE ISLANDS - SEPTEMBER 4-6, 2024

st ISLANDS WATE

Salinization processes depend on flow rates and exploration time

Adapted from Machado (2018).

Terceira island case

Water consumption

Counting	Human	Agriculture	Industry	Total
Counties	supply (m ³ /y)	(m ³ /y)	(m ³ /y)	(m³/y)
Terceira island	6 100 000	4 200 000	1 200 000	11 500 000
Angra do Heroísmo	3 500 000	2 700 000	650 000	6 850 000
Praia da Vitória	2 600 000	1 500 000	550 000	4 650 000

Area (km ²)	401,6
Maximum widht (km)	29,0
Maximum lenght (km)	17,5
Maximum altitude (m)	17,5

		Municipalities				
Descriptor	Terceira island	Angra do Heroísmo	Praia da Vitória			
Population ^(a)	53331	33799	19482			
Nº Catlle ^(b)	58802	37771	21031			

^(a) 2021 census ^(b) SREA (2009)

Human supplyAgricultureIndustry

Estimated groundwater resources (m ³ /y)	193 000 000
Groundwater abstracted for supply (m ³ /y)	11 500 000
Surface water abstracted for supply (m ³ /y)	2 000 000
Groundwater sources abstracted for supply	95
Springs abstracted for supply	80
Drilled basal wells abstracted for supply	15
Driled perched wells abstracted for supply	8
Number of water supply systems	5

Jan	Feb	Mar	Apr	May	Jun	JuL	Aug	Sep	Oct	Nov	Dec
Jan	Feb	Mar	Apr	May	Jun	JuL	Aug	Sep	Oct	Nov	Dec

The scenarios related to climate change point to changes in the **distribution of precipitation**, with the periods of greatest aquifer recharge being concentrated between and October and March (75-80%) and periods of drought between April and September (20-25%)

Increase the recharge seasonality

Decline of resources in the driest period

Risk of salinization of the basal aquifer

Strengths

- Occurrence of high rainfall in the island's interior, in the main aquifer recharge areas;
- Recharges distributed throughout the year;
- Complementarity of flows from perched aquifers and the basal aquifer;
- Reduced exposure to polluting agents in the high recharge areas;

Strengths and Challenges

Challenges

Ensure the quality of groundwater and surface water bodies as well as their conservation and improvement.

Protect water sources and associated ecosystems.

Ensure the quantitative and qualitative supply of water, in a context of sustainable, balanced and equitable use.

Promote an institutional and regulatory framework capable of ensuring the planning and integrated management of water resources.

Promote knowledge and research on island water resources, providing a deep technical and scientific knowledge.

Optimise the monitoring network in order to improve an information and surveillance system relating to water quality.

Strengths and Challenges

