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Objectives 
    Arch dams have been widely constructed around the 

world due to the advantages of economy, safety and 

reliability. The strong uncertainty of earthquakes makes it 

possible for arch dams to be subjected to over-designed 

earthquakes, which may lead to extremely serious 

casualties and property losses. In actual concrete arch 

dam engineering scenarios, the dynamic data obtained 

by the health monitoring system of an arch dam are 

incomplete. The data acquired typically depend on the 

state of the dam structure, that is, whether it is intact or 

incomplete. Accordingly, the formulation of an accurate, 

efficient, and intelligent damage warning and 

identification model for concrete arch dams is necessary 

to ensure infrastructure safety. 

Conclusions 
    Four working conditions are designed to reproduce the 

uncertainty of structural modeling and the variability of 

water levels. The conditions are based on the post-

seismic water level detection requisites of dams in 

practical engineering. The results show that the proposed 

anomaly detection model enhances the generalization 

performance of the DCS-DAE in terms of feature design. 

Hence, the constructed model can “infer other things from 

one fact.” The results of this study are meaningful for the 

real-time cross-domain monitoring of structures under 

variable load conditions, providing a driving force to apply 

similar methods to practical arch dam projects. 

Methods 
    Guided by the direct extraction of damage sensitivity features 

from the acceleration response signals of the arch dam, A DCS-

DAE model based on domain adaptation is proposed considering 

the anomaly detection requirements of arch dams under different 

water level conditions in actual engineering scenarios. The core 

idea of the proposed method is to constrain the data probability 

distribution of feature spaces in the source and target domains 

using maximum mean discrepancy. This fusion enables the DCS-

DAE model to be capable of feature extraction. Moreover, it 

resolves the problem in which the objective function cannot be 

applied to other similar scenarios because of the lack of 

consistency constraints of feature spaces in the source and 

target domains. 

Results 

    The impact of environmental loads and modeling errors on 

the source domain model can be effectively measured by 

MMD. The performance attenuation of the DCS-DAE model 

without domain adaptation in each target domain is positively 

correlated with the MMD value in each target domain; the 

higher the MMD value, the lower the anomaly detection 

performance. Moreover, in the training of the DCS-DAE model 

based on domain adaptation, with a decrease in the MMD 

value, the performance of anomaly detection gradually 

improves. Therefore, in practical engineering, the influence of 

environmental load or model error on structural anomaly 

detection can be determined according to the MMD value. 

Figure.1  Schematic diagram 
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Figure.2  Performance of DCS-DAE model based on domain adaptation 
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M1 Elastic modulus  log-normal distribution (Gpa)

Mean: 38.7 ; Cov: 0.15

M2 Elastic modulus log-normal distribution (Gpa)

Mean: 35 ; Cov: 0.15

M3 Elastic modulus log-normal distribution (Gpa)

Mean: 37.2 ; Cov: 0.15

M4 Elastic modulus log-normal distribution (Gpa)

Mean: 38.7 ; Cov: 0.15

Figure.3  Schematic of arch dam partition and selection of random parameters 


