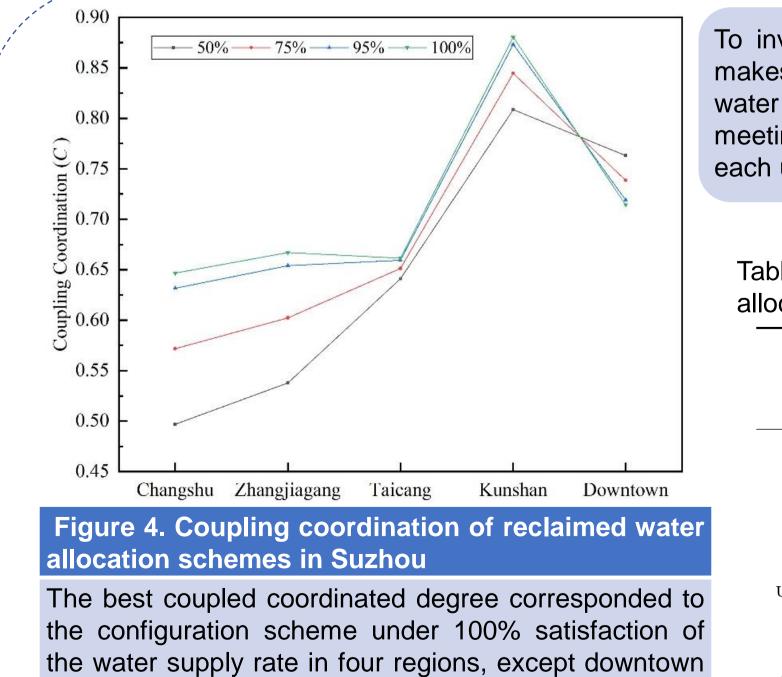

Study on the Rational Allocation of **Regional Reclaimed Water Based on the System Coupling Coordination Criterion**


Yanming Li, Hongyuan Fang, Jinfu Hou, Qianqian Cheng College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China

Objectives

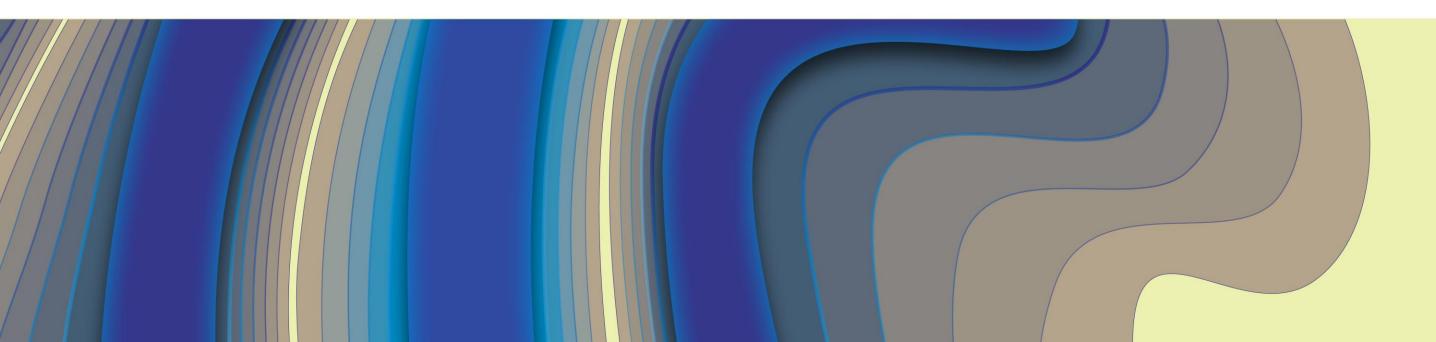
- Take five areas (the downtown Suzhou and four county-level cities) in Suzhou as the study area and measure the development of urban water resources, the economy, the environment, and reclaimed water in all aspects.
- Establish the water resources-economic-environment-reclaimed water (WEER) system coupling coordination model that meets the actual situation of the study area.
- Study the impacts of different reclaimed water allocation schemes on the coupling coordination of the urban WEER system.

Methods			The water resources-economic- environment-reclaimed water (WEER) system coupling coordination degree		egression mod Ind coupling co		n reclaime	ed water	use
	Table 1. WEER system indexes			Region	F	egression model		p-valu	e
Guideline Indicator Lavor Indicator	Meaning			Changshu	y=0.00836x1+0.0014x2+	0.023x3+0.0000811x4-0.0	0398x5+0.347	0.09	
System Properties	e average amount of water resources per person in the		The utilization of recycled water	Zhangjiagang	y=0.036x1-0.00151x2-	0.0729x3+0.00255x4-0.00	25x5+0.409	0.023	
A2 Runoff coefficient + T	region, including surface water and groundwater he ratio of the regional surface runoff to precipitation		through each pathway for each	Taicang	y=-0.000266x	1+0.000111 <i>x</i> 4+0.0416 <i>R</i> +0	496	0.034	
A3 Water consumption per ten thousand Yuan GDP (m ³) - T	he water consumption per 10,000 yuan in the region		region from 2008 to 2020	Kunshan	y=-0.000145x1-0.0000799	x2+0.118x3+0.0000182x4-0	0.00023x5+0.737	0.043	
(WaterA4 Percentage of water used for productionResourcesand operation (%)	The regional production and operation water consumption as a percentage of the total water	Coupling Coordination Model		Downtown Suzhou	y=-0.0000508x1+0.000149	x2-0.0204x3+0.0000158x4	-0.0196x5+0.812	0.026	
water use (%) A6 Per capita water supply (m ³) + A7 Water production module (×10 ⁴ m ³ /km ²) +	consumption e regional residential household water consumption as a percentage of the total water consumption The average water supply per person in the region e ratio of the total regional water resources to the total area e ratio of the regional GDP to the regional household population	$t_{i}(\text{Positive indicators}) = -\begin{bmatrix} 0, x_{i} \le a_{i} \\ 0.5(\frac{x_{i} - a_{i}}{b_{i} - a_{i}}), a_{i} < x_{i} \le b_{i} \\ 0.5 + 0.5(\frac{x_{i} - b_{i}}{c_{i} - b_{i}}), b_{i} < x_{i} \le c_{i} \end{bmatrix}$		water consumption, ur	coordination; x_1 , x_2 , x_3 , x_4 , and x_5 oan miscellaneous water consump the ratio of the river landscape s	tion, river landscape reple	enishment, and other m	eans of water use,	
B2 Registered urban unemployment rate (%) - an B B3 General public budget revenue as a The (Economic percentage of GDP (%) +	e number of registered unemployed persons in urban eas as a percentage of the total number of employed and unemployed persons in urban areas ratio of the regional general public budget revenue to the regional GDP The ratio of the resident households' discretionary	$\begin{bmatrix} 1, c_i < x_i \\ 1, x_i \le c_i \\ 0.5 + 0.5(\frac{b_i - x_i}{2}), c_i < x_i \le b_i \end{bmatrix}$	The best coupling coordination degree corresponding to alternate	Table	e 3. Suzhou red	cycled wate	r use confi	guration	program
B4 Disposable income per inhabitant (yuan) + B5 Urbanization rate (%) +	income to the resident urban population regional urban population as a percentage of the total	t_i (Negative indicators) = $- \frac{b_i - c_i}{a_i - x_i}$	scenarios of reclaimed water		Pla	nt self- Industrial	Urban River landscape		
B6 Economic density (×10 ⁷ yuan/km ²) +	resident population The ratio of the GDP to the total area of the region he amount of industrial waste gas emitted per 10,000	$0.5(\frac{a_i - x_i}{a_i - b_i}), b_i < x_i \le a_i$	allocation		Region rate const	ater water	scellancous supplement water supplement nsumption consumptio ×10 ⁴ m ³) (×10 ⁴ m ³)	(×104 m ³)	al (×10 ⁴ m ³)
thousand Yuan GDP (m ³)	yuan in the region percentage of regional wastewater treatment capacity	$w_i = \frac{W_{il}W_{ill}}{n}$				3.33 36.67	0.89 1720		1789.56
C2 Sewage treatment rate (%) + C3 Sewage discharge per ten thousand Yuan The	versus wastewater discharge amount of sewage discharged per 10,000 yuan in the	$w_i = \frac{1}{\sum_{i=1}^{n} w_{i\mathrm{fI}}} W_{i\mathrm{fI}}$			75% Changshu 95% 1	8 55 0.13 69.67	1.34 2580 1.7 3268		2684.34 3400.16
$GDP (\times 10^4 \text{ m}^3)$ C4 Greening coverage of built-up areas (%) +	region e percentage of built-up area covered by greenery in	$\sum_{i=1}^{n} \cdots i 1 \cdots i 1 $			100%	11 73	2 3440	53	3579
С	the urban built-up areas The amount of sludge treated per 10,000 yuan in the	$I_{WEER} = \alpha I_W + \beta I_{E1} + \gamma I_{E2} + \eta I_R$			50% 75%	3 483.33 4.5 725	4.83 763.33 7.25 1145		1929.17 2893.75
+	region e amount of major pollutants reduced per 10,000 yuan	$\int \frac{1}{2}$			Zhangjiagang 95%	5.7 918.33	9.18 1450.33		3665.42
thousand Yuan GDP (t) C7 Runoff to sewage ratio +	in the region he ratio of the regional surface runoff to the sewage	4			100% 50% 30	6 967)3.33 0	10 1527		3858
Th	discharge e percentage of the number of water quality standards	$D = \left\{ \frac{I_W \times I_{E1} \times I_{E2} \times I_R}{\Gamma (I_{E1} \times I_{E1} \times I_{E2} \times I_R)} \right\}$			75%	455 O	0 1365		1213.33 1820
	the water function area to the total number of water quality tests	$\left \frac{\left(I_{W} + I_{E1} + I_{E2} + I_{R}\right)}{4} \right $			Taicang 95% 5'	0 0	0 1729	0 2	2305.33
(m ³)	e average amount of reclaimed water used per person in the region				100%	507 0 100 106.67	0 1820 2.33 2123.33		2427 3285.67
$(\times 10^4 { m m^3/d})$ +	ne daily volume of reclaimed water generated by the reclaimed water plant	$C = \sqrt{D imes I_{WEER}}$			75%	150 160	3.5 3185		4928.5
D D3 Rate of reclaimed water use (%) +	The percentage of reclaimed water consumption for sewage treatment				Kunshan 95%	202.67	4.43 4034.33		6242.77
Water System) D4 Industrial water recycling rate (%) +	e percentage of industrial repeated water consumption for industrial water consumption				100% 50% 45	200 213 46.67 286.67	5 4247 3.33 13123.33		6571 17960
D5 Reclaimed water consumption per T 10,000 Yuan GDP (m ³)	he amount of reclaimed water consumed per 10,000 yuan in the region					820 430	5 19685		26940
D6 Reclaimed water pipe density (km/km ²) + Th	e ratio of the length of the reclaimed water pipeline to the total area of the region				Suzhou	38.67 544.67	6.33 24934.33	0	34124
					100% 5	093 573	7 26247	0	35920

Suzhou.

To investigate the reason why the higher reclaimed water satisfaction rate in downtown Suzhou makes the coordination degree decrease, we set up alternative scenarios for downtown. The other water demand base amount was set as 0, and it was not considered. This scheme is based on meeting 50% of the recycled water demand and changing the rate of meeting the water demand of each utilization pathway.

Table 5. Coupling coordination corresponding


Conclusions

- In the excellent performance of each system development and the WEER system coupling coordination, downtown Suzhou had the best results.
- The closer the other areas were geographically to downtown Suzhou, the better the area performed.
- The development of this region should be government-led and market-driven with environmental protection as the primary premise to scientifically allocate regional water resources, optimize industrial institutions, promote economic quality and efficiency changes, and encourage the use of renewable water resources.
- Downtown Suzhou needs to use the recycled water more fully to supplement water consumption for the river and lake landscapes.
- Different recycled water allocation schemes could change the coordination of regional development. Since this study focused on the specific situation of the water resources, economy, ecological environment, and recycled water in five regions of Suzhou, it presented clear relevance. In future research, the scope of the study could be expanded

	Satisfaction rate					Scheme	I	п	III	IV	v
	I	II	ш	IV	V	Coupling	0.763	0.648	0.784	0.729	0.866
Plant self-water consumption	50%	75%	50%	50%		coordination					
Industrial water consumption	50%	50%	75%	50%	50%	he most impo	rtant me	ans of	regulat	ing the	e coupl
Urban miscellaneous water consumption	50%	50%	50%	75%	50%	nd coordinations to increase the		•			
River landscape supplemental water consumption	50%	50%	50%	50%	75%	onsumption.					

> IV V III 0.7840.729 0.866

to improve the model, and research ideas with more comprehensive data information could be used to obtain the universality of the view that the utilization of reclaimed water can regulate the coupling coordination of the urban WEER system.

水与万物: 人与自然和谐共生