

# Non-stationary GEV Modeling of Precipitation Extremes

Murat Yeğin Ahmet Körpınar

Gülşah Karakaya

Elçin Kentel

Middle East Technical University



第18届 世界**水资源大会** <sup>x5万和:</sup>





The research leading to these results is funded by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and an on-going project 'An Agent-based Model for Flood Risk Mapping: Urbanization and Climate Change Effects' (Project ID: 220N054).



## **Table of Contents**

- Stationarity Concept
- Study Area
- GEV Models
- Covariates
- Results

## **Stationarity Concept**

#### Stationary

#### **Non-stationary**

• Weak stationary

Changing statistics







**Study Area** 



Study area consists of 53 meteorological stations (MS) from generally central and southern Turkey. Time range for the study is determined as 1976-2005.



Figure 1. Locations of the MSs



### **GEV Models**



• Generalized Extreme Value (GEV) distribution for modeling extreme events

• Block Maxima (BM) series of the time series

- Three-parameter distribution: location ( $\mu$ ), scale ( $\sigma$ ) and shape ( $\xi$ )
- Cumulative Distribution Function:

$$G(z) = exp\left\{-\left[1+\xi\left(\frac{z-\mu}{\sigma}\right)\right]^{1/\xi}\right\}$$

**GEV Models** 



#### Four types of GEV models:

| Model | μ  | σ  | ξ |
|-------|----|----|---|
| TO    | С  | С  | С |
| T1    | СН | С  | С |
| T2    | С  | СН | С |
| Т3    | СН | СН | С |

C: Constant CH: Changing

## **Covariates**



- Appropriate covariates
- Five covariates (1, 2 and 3 based on literature, 4 & 5 suggested in this study):
  - Tmax (maximum temperature of the day that block maxima event occurred)
  - Y (year)
  - NAO (North Atlantic Oscillation)
  - DN (number of days in a year whose maximum temperature exceeds the long-term average temperature)
  - SL (a linear regression that fitted to the Tmax time series)

**Covariates** 



#### Table 1. GEV Models and Covariates

|            |       | Covariates |   |    |    |     |  |
|------------|-------|------------|---|----|----|-----|--|
| Model Type | Model | Tmax       | Y | DN | SL | NAO |  |
| Т0         | 1     | -          | - | -  | -  | -   |  |
| Τ1         | 2     | +          | - | -  | -  | -   |  |
|            | 3     | -          | + | -  | -  | -   |  |
|            | 4     | -          | - | +  | -  | -   |  |
|            | 5     | +          | + | -  | -  | -   |  |
|            | 6     | -          | + | +  | -  | -   |  |
|            | 7     | +          | + | +  | -  | -   |  |
|            | 20    | -          | - | -  | +  | -   |  |
|            | 21    | -          | - | -  | -  | +   |  |
|            | 26    | _          | + | -  | -  | +   |  |
|            | 27    | +          | - | -  | -  | +   |  |
| T2         | 8     | +          | - | -  | -  | -   |  |
|            | 9     | -          | + | -  | -  | -   |  |
|            | 10    | -          | - | +  | -  | -   |  |
|            | 11    | +          | + | -  | -  | -   |  |
|            | 12    | -          | + | +  | -  | -   |  |
|            | 13    | +          | + | +  | -  | -   |  |
|            | 22    | -          | - | -  | +  | -   |  |
|            | 23    | -          | - | -  | -  | +   |  |
|            | 28    | -          | + | -  | -  | +   |  |
|            | 29    | +          | - | -  | -  | +   |  |
| Т3         | 14    | +          | - | -  | -  | -   |  |
|            | 15    | -          | + | -  | -  | -   |  |
|            | 16    | -          | - | +  | -  | -   |  |
|            | 17    | +          | + | -  | -  | -   |  |
|            | 18    | -          | + | +  | -  | -   |  |
|            | 19    | +          | + | +  | -  | -   |  |
|            | 24    | -          | - | -  | +  | -   |  |
|            | 25    | -          | - | -  | -  | +   |  |
|            | 30    | -          | + | -  | -  | +   |  |
|            | 31    | +          | - | -  | -  | +   |  |

#### 31 GEV models

**Covariates** 



- The best NS model for each MS
- Akaike Information Criterion (AIC)

AIC = 2K - logL

where *K* is the number of independently adjusted parameters in the model and *L* is the maximum likelihood of the model

- The best NS model vs. S model
- Likelihood Ratio (LR) test

LR = -2(y-x)

where x is the negative log-likelihood of the simpler model and y is the negative log-likelihood of the complex model.



- Better performance of NS models with one or two covariates
- NS models where NAO and Y are used as covariates have better performance



**Results** 





Figure 4. Stationarity of the MSs

## Conclusion



- 27 S stations & 26 NS stations
- Konya Closed Basin: 7 NS & 3 S
- Doğu Akdeniz Basin: 5 S & 1 NS
- Asi Basin: 4 NS & 1 S
- 12 T1 models, 10 T2 models and 4 T3 models
- NS models with one covariate generally performed better
- Well performing NS models generally have NAO and Y as covariates



References



- Akaike, H. 1974. "Markovian representation of stochastic processes and its application to the analysis of autoregressive moving average processes", Annals Ins. Stat. Math. 26, 363–387. Aon. 2018.
- Coles, S. (2001) An Introduction to Statistical Modeling of Extreme Values. Springer-Verlag. https://doi.org/10.1007/978-1-4471-3675-0
- Condon, L. E., Gangopadhyay, S., & Pruitt, T. 2015. "Climate change and non-stationary flood risk for the upper Truckee River basin". Hydrology and Earth System Sciences, 19(1), 159–175. https://doi.org/10.5194/hess-19-159-2015
- Jenkinson, A. F. 1955. "The frequency distribution of the annual maximum (or minimum) values of meteorological elements", Quarterly Journal of the Royal Meteorological Society, 81(348), 158–171. https://doi.org/10.1002/qj.49708134804
- Lindgren, G., Rootzen, H., & Sandsten, M. 2013. "Stationary Stochastic Processes for Scientists and Engineers (1st ed.)", Chapman and Hall/CRC
- Vu, T. M., & Mishra, A. K. 2019. "Nonstationary frequency analysis of the recent extreme precipitation events in the United States", Journal of Hydrology, 575, 999–1010. <u>https://doi.org/10.1016/j.jhydrol.2019.05.090</u>