

An interpretable machine learning approach for mapping urban pluvial flood susceptibility Ze Wang; Heng Lyu; Chi Zhang

Dalian University of Technology

Content

Backgrounds

Methods

Results

Conclusions

Pluvial flood is one of the most destructive natural disasters in urban areas

□ Credible <u>flood susceptibility map</u> is required for flood preparation and mitigation

"Flood susceptibility The probability of an area being flooded"

□ <u>Machine Learning</u> is becoming a conventional tool for flood susceptibility mapping

✓ Efficiently Establish mapping relationships

Backgrounds

Data Scarcity

- × Information hidden in unlabeled data
- × Spatial relationships among data

□ Lack of Interpretability

Black Box V.S. White Box

- X Quantification of <u>hydrological responses</u>
- ✗ Understanding of <u>flooding mechanism</u>

Graph Attention Network (GAT)

Semi-supervised model handles labeled and unlabeled samples

Graph neural networks process unstructured data and extract spatial features

- Overcome data scarcity challenge through a *waterflow-like information* propagation pattern.
- Enable quantification of hydrological responses among spatial units based on *attention mechanism*

Methods

GAT was applied in the metropolitan area of Dalian

The overview of data flow and workflow for GAT, ANN, and CNN.

Basic flood conditioning factors

Flood Inventory

✓ GAT outperformed in flooded-nonflooded classification

Model	Phase	Accuracy	Precision	Recall	F score
ANN	Training	0.84 (0.02)	0.85 (0.02)	0.84 (0.02)	0.84 (0.02)
	Test	0.82 (0.07)	0.86 (0.12)	0.81 (0.08)	0.83 (0.06)
CNN	Training	0.89 (0.02)	0.86 (0.03)	0.93 (0.04)	0.90 (0.02)
	Test	0.84 (0.06)	0.84 (0.07)	0.87 (0.05)	0.85 (0.06)
GAT	Training	0.85 (0.02)	0.85 (0.02)	0.85 (0.01)	0.85 (0.01)
	Test	0.85 (0.05)	0.87 (0.09)	0.87 (0.04)	0.87 (0.04)

✓ GAT provided rational flood susceptibility map

✓ GAT can extract informative high-order features

Results

□ Attention-based interpretability indicators

Self-attention weight

the degree to which the local flood is attributed to surroundings or the site itself.

Weight entropy

Whether the neighboring units uniformly affect the flood in a unit.

Accumulated attended weight

The level of attention that a unit receives from others.

or

or

or

Implications for flood interpretation and management

- High flood susceptibility is related more to <u>the environment of the</u> <u>surroundings</u> than to that of the sites themselves.
- The local flood typically sources from neighbors in multiple directions, while <u>mainly along</u> roads.
- The key locations are mostly located in the <u>paths from source</u> <u>to sink</u>, and their distributions are decentralized.

- GAT demonstrates the superiority in classification performance and the flood susceptibility distribution.
- GAT allows for the interpretability by quantifying the hydrological responses among different spatial units.
- GAT has moved a step to interpretable machine learning model, and can be an effective tool in practical urban flood management

Thank you!

Wang Ze (王泽) Applications of AI in urban hydrology

Email: zewangjason@163.com

WeChat