

Impacts of Cryospheric Shrinking on Water Resources in China

Shichang Kang(康世昌), Rensheng Chen(陈仁升), Yong Yang(阳勇)

Northwest Institute of Eco-Environment and Resources Chinese Academy of Sciences

Outline

- 1. Background
- 2. Glacial meltwater
- 3. Snowmelt
- 4. Hydrologic effects of permafrost degradation
- 5. Comprehensive impacts on water resources

1. Background

Cryosphere: a sphere on the earth's surface with a certain thickness, where temperature is continuously at or below 0 °C.

- Glacier (including ice sheet)
- Frozen ground (including permafrost and seasonally frozen ground)
- Snow cover
- River ice
- Lake ice
- Sea ice
- Ice shelf
- Iceberg
- Subsea permafrost
- Frozen water in the atmosphere

The cryosphere is the world's largest reservoir of fresh water resources (>70%)

1. Background

Cryosphere in China

Glacier

Frozen ground

Snow cover

46,377 59425 km² 5.6 × 10¹² m³

Permafrost $220 \times 10^4 \text{ km}^2$

Stable snowcover region $420 \times 10^4 \, \text{km}^2$

1. Background

West: west of the Heihe river Northeast: Higher mountain elevations

Atmosphere Atmosphere-Cryosphere Mutual Feedback Mechanism water resourt Water cycle. Hydrosphere Monitoring, process, mechanism, change Cryosphere Land suface process cold area lisaset Influence and adaptation Anthropocene lithosphere **Cryospheric changing**

Water Resources

Glacier change in China

Glacier area: decreased

Glacier mass balance: **negative**

王宁练等,2019

Glacial meltwater runoff depth

Ratio of glacial meltwater in basins 丁永建等, 2017

China: 669.43×10⁸ m³ Outflow basins: 385.15×10⁸ m³ Inland basins: 284.28×10⁸ m³ 刘国华, 2023

Changes of glacial meltwater in basins with different glacier coverage

- increased in basins with a large number of glaciers and large glaciers
- decreased in basins dominated by small and dispersed glaciers

刘国华,2023

刘国华,2023

2020-2030 (Shule, Yangtze, Yellow·····)

陈仁升等,2019;刘国华,2023

Change of snow water equivalent (SWE) in China

- SWE increased in North
- SWE decreased in South

Three main regions with stable snowcover: Northern Xinjiang, Northeast China and the Tibetan Plateau

Variation of annual runoff at Altai hydrologic station in Kelan River

陈仁升等,2019

Yang et al, 2022

Snowmelt runoff ratio (1951~2017)

West China: >10% North and Northeast China: >5% South China: <2%

Decreased in most basins Increased mainly distributed in the southeastern part of the Tibetan Plateau, the Heihe River, the Gurbantünggüt Desert, the Songhua River basin

Yang et al, 2022

Differences between the projected mean annual snowmelt and the reference period (1981-2010)

- Northwest: increase in lowelevation arid areas and decrease in the higher elevation Tianshan and Altai Mountains
- Northeast: increase in the Greater Khingan Range and the Songliao Plain and decrease in the Lesser Khingan and Changbai mountains
- Tibetan Plateau/ Southeast China: large decrease

Differences between the projected snowmelt runoff ratio and the reference period (1981-2010)

- The projected snowmelt runoff ratios are mostly smaller, except for a few basins in Xinjiang and North China
- The largest decreases are projected under RCP8.5, followed by RCP4.5, RCP2.6.
- Under RCP8.5, the snowmelt runoff ratios in the Tibetan Plateau and Tianshan Mountains are projected to decrease by more than 5% in most basins and by more than 10% in a few basins in the far-future.

Monthly hydrograph~Percentage of permafrost in basins

月份

Larger Maximum/Minimum runoff

丁永建等,2017

More permafrost/basin area

Hydraulic conductivity of frozen soil is much lower than that of melted soil

陈仁升等,2019

Wang et al., 2018

Threshold: 40%

Permafrost coverage >40% : Hydrological regime stable

Permafrost coverage <40% : Hydrological regime changed significantly

Underground ice in permafrost regions

Total volume

China: 10820 km³

Tibetan Plateau: 9492 km³

Tianshan/Xinjiang: 515 km³

Northeast China: 777 km³

Meltwater from permafrost

5.5 cm/a 99×10⁸ m³ per year

Li et al., 2022

1) Basinal scale: hydrological observation in Shule River

The difference in annual precipitation is only 10mm

Glaciers shrinking: increased summer runoff Change of snowmelt: advanced spring flood peak; shortened snowmelt period Permafrost degradation: increased winter runoff

陈仁升等,2019

2) Regional scale

-30

Glacier melt increased, except for the Yellow River

澜沧江源

Lantsang

Interdecadal variation of total runoff, glacial melt,

Snowmelt decreased

2) Region scale: projected runoff component

Glacier melt decreased, snowmelt decreased

Li et al., 2022

Thanks for your attention!