

Digital Twinning Watershed for Qinghai Lake Basin

Jiahong Liu & Yunzhong Jiang et al. China Institute of Water Resources and Hydropower Research

Content

- Introduction
- Study area and methodology
- Results and discussion
- Summary

The 19th National Congress of the Communist Party of China made strategic arrangements for **Digital China** in 2017.

The Ministry of Water Resources is now promoting the construction of digital twin river basins.

Introduction

Introduction

□ How can we make the future projections ?

Digital Twinning Watershed

Action Regulation Control Knowledge Decision Making AI Virtual & Augmented Reality **Simulation** Data management **Data Governance** Monitoring Stereoscopic perception

Content

- Introduction
- Study area and methodology
- Results and discussion
- Summarize

2.1 Study area

2.1 Study area

2.1 Study area

Year

2.2 Methodology (Digital Twinning Watershed)

2.2 Methodology (Digital Twinning Watershed)

Five steps for the river basin digital twinning

Content

- Introduction
- Study area and methodology
- Results and discussion
- Summarize

3.1 Model construction

River network

DEM

Potential ET

Landuse

Vegetation Cover

3.2 Model Calibration & Validation

Comparison of simulated and observed discharge of Shaliu River

Main parameters in Shaliu River basin

ID	Sensitivtiy	Parameter	Unit of the parameter	Value
1	Sensitive parameters	PKV0	m/h	0.0009
2		PKV1	m/hr	0.0013
3		PKV2	m/hr	0
4		PKH1	m/hr	0.97
5		PKH2	m/hr	0.0016
6	Non-sensitive parameters	UTHETA1	m/hr	0.15
7		UTHETA2	m/hr	0.35
8		MTHETA1	m/hr	0.2
9		MTHETA2	m/hr	0.325

- correlation coefficient R^2 Nash efficiency coefficient E_{ns} $R^2 = \frac{\left(\sum_{i=1}^{n} \left(Q_{sim,i} - \overline{Q}_{sim}\right) \left(Q_{obs,i} - \overline{Q}_{obs}\right)\right)^2}{\sum_{i=1}^{n} \left(Q_{sim,i} - \overline{Q}_{sim}\right)^2 \sum_{i=1}^{n} \left(Q_{obs,i} - \overline{Q}_{obs}\right)^2} \qquad E_{ns} = 1 - \frac{\sum_{i=1}^{n} \left(Q_{obs,i} - \overline{Q}_{sim,i}\right)^2}{\sum_{i=1}^{n} \left(Q_{obs,i} - \overline{Q}_{obs}\right)^2}$
- > Calibration: $R^2 = 0.84$; $E_{ns} = 0.81$; Validation: $R^2 = 0.86$; $E_{ns} = 0.84$
- The runoff simulation results from 2011 to 2020 show that the mode

accuracy is reliable.

3.2 Model Calibration & Validation

Comparison of simulated and observed discharge of Buha River

Main parameters in Buha River basin

ID	Sensitivtiy	Parameter	Unit of the parameter	Value
1	Sensitive parameters	PKV0	m/h	0.0008
2		PKV1	m/hr	0.0013
3		PKV2	m/hr	0
4		PKH1	m/hr	0.97
5		PKH2	m/hr	0.0016
6	Non-sensitive parameters	UTHETA1	m/hr	0.15
7		UTHETA2	m/hr	0.35
8		MTHETA1	m/hr	0.2
9		MTHETA2	m/hr	0.315

...

...

...

...

> Calibration: $R^2 = 0.74$; $E_{ns} = 0.72$; Validation: $R^2 = 0.71$; $E_{ns} = 0.67$

The runoff simulation of Buha River basin is accurate on the whole, but the discharge have a phenomenon of "low before precipitation and high after precipitation", especially in 2018.
The reason maybe the snow and glacier melting under the changing temperature weather, which leads to a large flood peak error.

3.3 Precipitation Projection in the future

4 scenarios:

SSP1-2.6: 456.2mm; SSP2-4.5: 464.5mm								
SSP3-7.0: <u>465.0</u>	<mark>m</mark> m; SSP5-8.5:	<u>465.9m</u> m						
Climate Model	1980-2014	2015-2100						
MIROC6	439.4mm	455.8-467.7mn						
MRI-ESM2	443.0mm	470.8-491.3mn						
IPSL-CM6A-LR	441.7mm	426.8-465.9mn						

The precipitation under medium and high carbon emission scenarios is higher than the low emission scenario. The average annual precipitation for the medium and high emission scenarios is **465mm**, and the average precipitation in the low emission scenario is **456mm**. Compared with the annual average precipitation in the past and the future, there is a **certain increase** compared to the past.

Water Level: m

- ✓ Based on the above precipitation scenario (IPSL-CM6A-LR), the water level of Qinghai Lake will continue to rise.
- For most majority of the scenarios, the rising rate will slow down.
- ✓ The most likely period for the water level exceeding 3198 meter is between 2036 and 2048.

3.4 Water level in the future

The measured water surface area of Qinghai Lake in 2020 was 4488.8 km², and the estimated water surface area in 2050 is 4915.3 km², which increased 426.5 km² compared with 2020. The average annual increase is 14.2 km². There are three positions that increase significantly, the estuary of Buha River (2A), Quanji River (2B) and Shaliu River (2C).
The infrastructure construction in these three areas should consider the future submerging impact.

Content

- Introduction
- Study area and methodology
- Results and discussion
- Summarize

4 Summarize

- Digital Twinning Watershed could provide a platform to simulate the past hydrological processes, in addition, it also could help us project the future scenarios. Of course, there is uncertainty for future estimation.
- The digital watershed model was constructed in Qinghai Lake Basin, based on which the water level change was estimated in the next several decades before 2100.
- The water level of Qinghai Lake will exceed 3198 meter between 2036 A.D. and 2048 A.D., which should have great impacts on the surrounding pastures, especially in the delta of Buha River and Shaliu River.

Make great efforts on climate change adaptation

Thanks for Your Attention!