



Comparative Study for Daily Streamflow Simulation with Different Machine Learning Methods

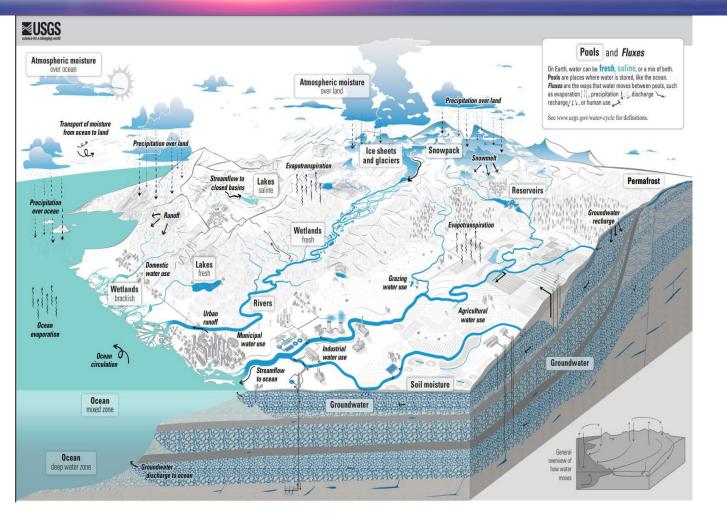
Ruonan Hao

Anhui University of Science and Technology

Zhixu Bai Wenzhou University

09/15 2023

Contents



- BackgroundAims and Objectives
- Material and Methods
- Results and Discussion
- Conclusions
- Future Work

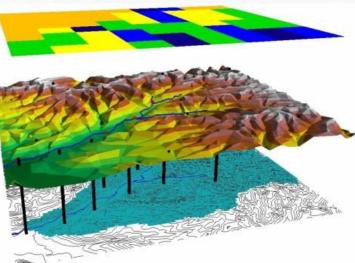
Background

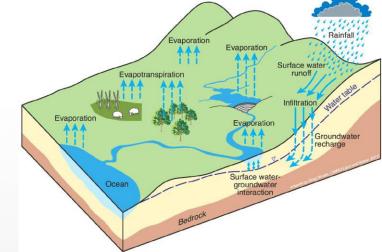
 Flood disasters in small watersheds in mountainous areas;

✓ Rainfall-runoff modelling;

✓ Machine learning;

Rainfall runoff mechanism





Aims and Objectives

Aim: The performances of various **ML methods** with different input scenarios and training data for **simulating daily runoff over a mountainous river catchment**

Objectives:

1)the comparison of Support Vector Regression (**SVR**), eXtreme Gradient Boosting (**XGBoost**), and Long-Short Term Memory Neural Network (**LSTM**) models for daily streamflow forecasting

2) the impacts of **inputs** (rainfall and antecedent streamflow) on modeling accuracy3) is there significant simulation differences during **different seasons** and for different machine learning methods?

Study Area

The north tributary of the Ao River (**ARNT**)

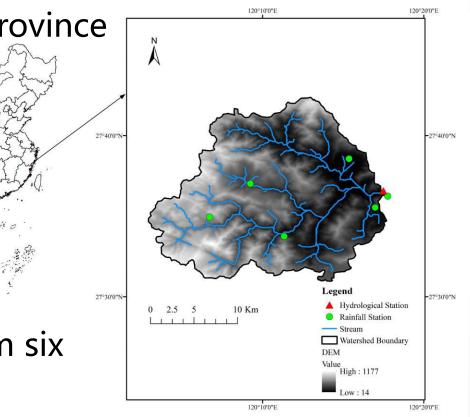
A small mountainous catchment in Zhejiang Province

Basin area: 346 km²

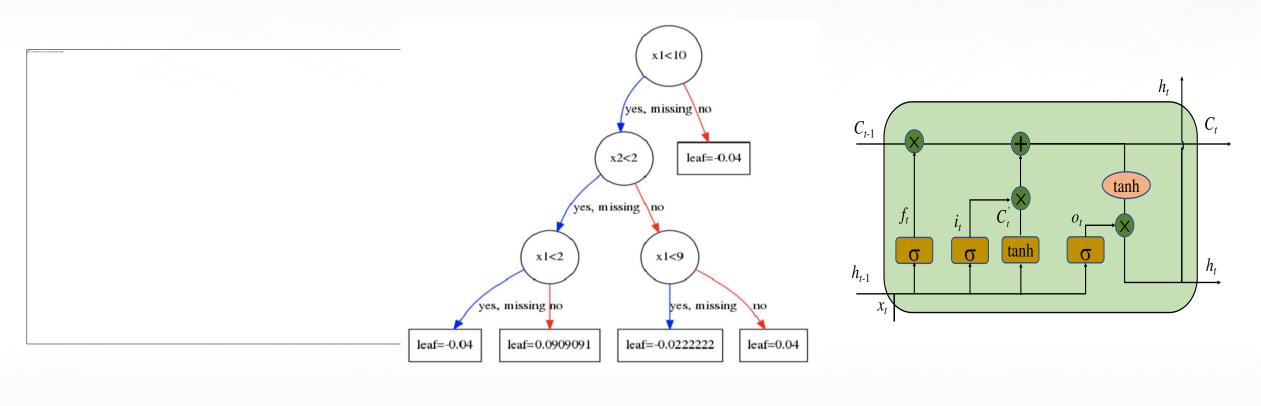
Mean annual discharge at the Daitou Station is 16.33 m³/s

Subtropical oceanic monsoon climate zone

Data: 1991 to 2013, daily precipitation data from six rainfall stations, daily discharge data from one hydrological station



Methods



SVR

XGBoost

LSTM

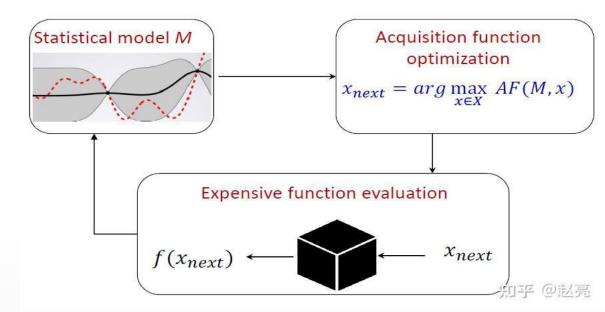
Methods

Single and Multiple inputs

Bayesian Optimization

第7页

Input Scenarios	Input Variables
Ī	Q_{t-1}
II	$\overline{P_t}$
III	$P_{1,t}, P_{2,t}, P_{3,t}, P_{4,t}, P_{5,t}, P_{6,t}$
IV	$\overline{P_t}$, $Q_{t ext{-}1}$
V	$P_{1,t}, P_{2,t}, P_{3,t}, P_{4,t}, P_{5,t}, P_{6,t}, Q_{t-1}$



Training	Validation	Testing	
1991	2005	2010	2013

Evaluation Criteria

NSE =
$$1 - \frac{\sum_{i=1}^{n} (d_i - y_i)^2}{\sum_{i=1}^{n} (d_i - \overline{d})^2}$$

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (d_i - y_i)^2}$$

$$CC = \frac{\sum_{i=1}^{n} (d_i - \overline{d})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (d_i - \overline{d})^2} \sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

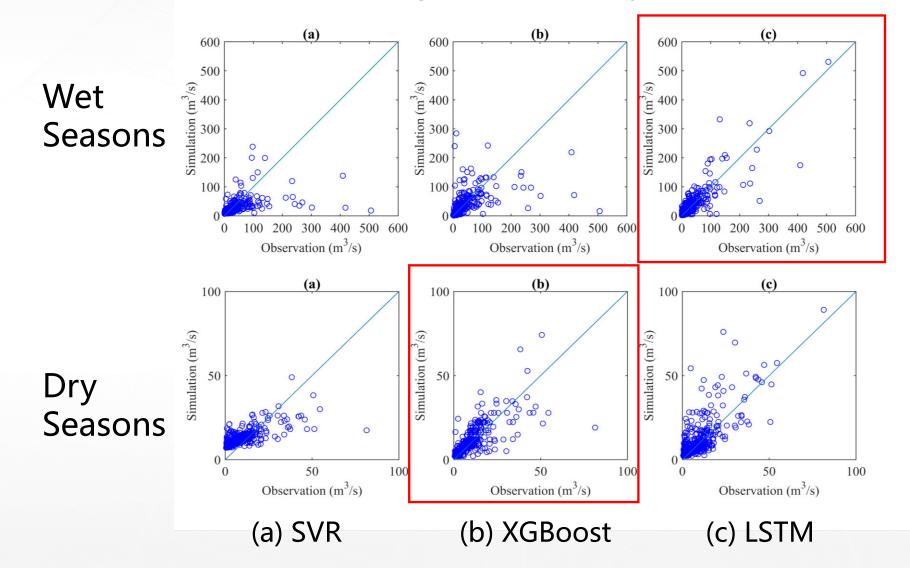
Simulation Performances with Single-Input Scenarios

Input Scenario	Model	Training			Validation			Testing		
		NSE	RMSE (m³/s)	СС	NSE	RMSE (m³/s)	СС	NSE	RMSE (m³/s)	СС
I	SVR	0.26	31.55	0.51	0.22	63.08	0.47	0.23	27.79	0.48
	XGBoost	0.32	30.21	0.56	0.23	62.69	0.50	0.27	26.95	0.53
	LSTM	0.09	34.83	0.31	0.04	69.97	0.21	0.08	30.34	0.29
П	SVR	0.11	34.46	0.47	0.13	66.46	0.63	0.09	30.12	0.37
	XGBoost	0.22	32.29	0.47	0.22	63.01	0.55	0.10	29.92	0.37
	LSTM	0.69	20.42	0.83	0.68	40.10	0.83	0.64	19.09	0.83

Simulation Performances with Multiple-Input Scenarios

InputScen ario	Model	Training			Validation			Testing		
		NSE	RMSE (m³/s)	СС	NSE	RMSE (m³/s)	СС	NSE	RMSE (m³/s)	СС
Ш	SVR	0.12	34.34	0.48	0.14	66.25	0.63	0.10	30.03	0.37
	XGBoost	0.25	31.60	0.51	0.31	59.13	0.61	0.08	30.40	0.35
	LSTM	0.70	20.08	0.84	0.72	38.09	0.85	0.67	18.22	0.84
IV	SVR	0.35	29.57	0.60	0.32	58.70	0.58	0.31	26.34	0.56
	XGBoost	0.48	26.36	0.70	0.40	55.07	0.70	0.37	25.02	0.62
	LSTM	0.72	19.30	0.85	0.68	40.32	0.83	0.70	17.27	0.85
V	SVR	0.35	29.56	0.60	0.32	58.91	0.57	0.31	26.31	0.56
	XGBoost	0.61	22.82	0.78	0.54	48.58	0.75	0.33	25.85	0.60
	LSTM	0.75	18.23	0.87	0.72	37.96	0.85	0.74	16.29	0.87

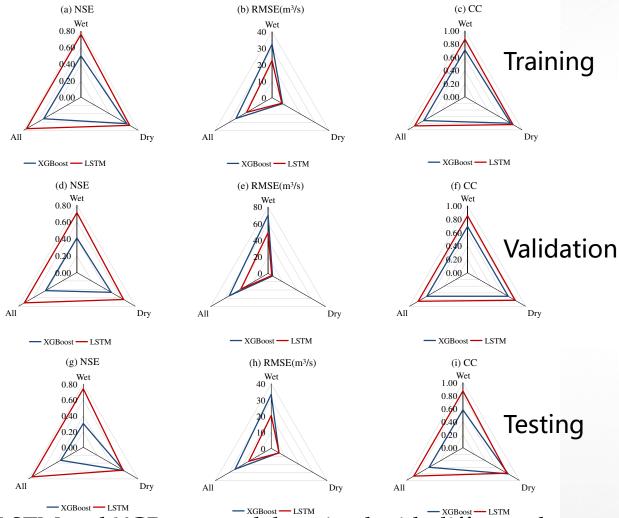
Simulation Performances during Wet and Dry Seasons



第12页

Classification of Wet and Dry Seasons for Simulation

- XGBoost trained with datasets during dry seasons >XGBoost for wet seasons;
- LSTM trained with datasets during wet seasons > LSTM for dry seasons;
- LSTM models trained with different
 datasets > the LSTM model trained with
 all datasets, especially during the dry
 seasons.



Comparison of LSTM and XGBoost models trained with different datasets

Conclusions

- The performance of LSTM models was always better than that of XGBoost, followed by that of SVR. XGBoost showed relatively high accuracy compared with LSTM during dry seasons.
- ✓ The impacts of input variables were different for SVR, XGBoost, and LSTM. LSTM:Rainfall, XGBoost: Antecedent Steamflow
- ✓ The classification of datasets according to wet and dry seasons improved the performances of LSTM especially for dry seasons.

Future Work

- Streamflow forecasting at a fine temporal scale over a mountainous river catchment
- Advancing the understanding of runoff processes by Interpretable Machine Learning
- **Uncertainty** of streamflow forecasting by machine learning

Thanks

rhn2019@aust.edu.cn