Upgrading low-quality water by managed aquifer recharge to provide safer groundwater in areas facing water scarcity

Jens Aamand¹ Bjørn K. Jensen¹ Jakub Modrzynski¹ Yunjie Ma² Yan Zheng²

¹Geological Survey of Denmark and Greenland ²Southern University of Science and Technology, China

SUSTech

Managed aquifer recharge (MAR)

Managed aquifer recharge (MAR) is the intentional recharge of water into suitable aquifers for subsequent recovery or to achieve environmental benefits;

MAR is the only practical way to restore overexploited aquifers MAR is often used to prevent salt-water intrusion

MAR can be used as a tool for adaptation to climate change

Concerns for contamination of the groundwater resource

- Organic pollutants
- Pathogens
- trace metals
- Nutrient

MAR via infiltration basins

Peter Dillon et al., 2009

For removal of pollutants MAR rely on physical, chemical, and microbial processes in subsoil and aquifers

ACWAPUR - Accelerated Water Purification during MAR – A tool to restore drinking water resources

 ACWAPUR aims at constructing barriers preventing leaching of pathogens, nitrogen species, and organic pollutants

The barriers may consist of compost, wood chips, barley straws, or other organic materials

Column setup

GEUS

Oxygen

Total number of bacteria

50% Compost

Microbial community composition

N-species

Ammonium oxidation (Nitrification)

 $NH_4^+ + 2O_2 \rightarrow NO_3^- + 2H^+ + H_2O$

GEUS

Jakub Modrzyński et al., Water Research 2017

Nitrospire

Jakub Modrzyński et al., Water Research 2017

Contaminants

G E U S Jakub Modrzyński et al., Water Research 2017

Contaminants

Jakub Modrzyński et al., Water Research 2017

Managed and unmanaged aquifer recharge

Maliva & Missimer (2012)

Beiyun river

Transformation of antibiotics

Riverbed sediments

SDZ Sulfadiazine,
SMX Sulfamethoxazole
SMZ Sulfamethazine

Sulfamethoxazole (SMX) - transformation products

Retrosynthesis of Sulfamethoxazole (SMX)

Duration of sediment incubation tests (day)

Fig. 4. Proposed transformation processes in SMX biodegradation at oxic and anoxic (NO3-reducing) conditions.

Conclusions

- Managed aquifer recharge is the only way to replenish overexploited groundwater resources
- Barriers creates anaerobic conditions
- Barriers may prevent leaching of ammonium and some, but not all organic pollutants
- Aquifer sediments and barriers have a great potential to retain pathogenic bacteria
- Chinese riverbed sediments have a high potential for degradation of antibiotics, but degradation products may appear

Acknowledgement

The MARSA project

Rural Water and Food Security An action supported by the European Union

